簡易檢索 / 詳目顯示

研究生: 楊仲元
Yang, Chung-Yuan
論文名稱: 預應變於微影製程中線寬調變上之應用
Photolithography Linewidth Modification by Pre-Strained Substrate
指導教授: 羅丞曜
Lo, Cheng-Yao
口試委員: 陳榮順
Chen, Rongshun
羅丞曜
Lo, Cheng-Yao
劉振良
Liu, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 76
中文關鍵詞: 線寬微縮力學拉伸預拉伸後微影製程圖樣修改應變
外文關鍵詞: linewidth reducing, mechanical stretching, prestretch, post-lithography, pattern modification, strain
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前半導體產業使用雙重圖形及浸潤式微影的技術來達到22 nm的製程,但由於其基本的光學及材料特性限制,這兩項製程方法也將很快地遇到瓶頸。同時,近年來各項軟性元件研究開始備受重視,在這樣的基礎上,本文提出了施加應變於軟性基板再進行微影製程來達到縮小其上結構線寬的方法。實驗的結果證明,圖樣可在不變更任何現有黃光製程設備及材料的情況下成功微縮,施加20%和40%預應變的狀況下,可分別獲得16.7%和28.6%的線寬微縮。


    Currently, the industry of semiconductor uses double-pattering and immersion lithography technique to achieve 22 nm manufacturing process. But according to its fundamental optical and material characteristics limitation, this two manufacturing process will face their bottleneck soon. In the same time, researchers put more focus on many kinds of soft devices. From this ground, this thesis presented a method that applying strain on flexible substrate then doing photolithography to reduce linewidth. The experiment results proved that pattern can be successively reduced without changing any lithography equipment and material which existing now. It could have 16.7% and 28.6% linewidth reducing respectively when applying 20% and 40% strain.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 符號表 XI 第一章 緒論 1 1.1前言 1 1.2先進微影製程技術 1 1.2.1雙重圖形微影技術 1 1.2.2浸潤式微影技術 4 1.2.3小結 7 1.3製作於順從性基板的金屬連接電路 7 1.3.1小結 23 1.4力學調變光柵 23 1.4.1小結 27 1.5研究動機 27 第二章 元件與實驗機制設計 30 2.1製程機制設計 30 2.2線寬微縮機制設計 31 2.3高分子基材之選擇 33 2.3.1彈性恢復力 33 2.3.2耐高溫性質 35 2.3.3光學性質 35 2.3.4最終高分子基材選定 36 2.4自製微拉伸夾具設計 37 2.5金屬濺鍍製程設計 39 第三章 元件製程方法 40 3.1實驗製程與設備 40 3.1.1 PDMS基材之製作 40 3.1.2黃光微影製程 42 3.1.2.1試片的剪裁與清潔 42 3.1.2.2光阻旋塗烘烤並施予預拉伸 42 3.1.2.3於施予預拉伸之狀態進行曝光及顯影 43 3.1.2.4金屬濺鍍製程 45 3.1.2.5剝離製程 46 3.1.2.6釋放試片使得線寬微縮 46 3.2光學顯微鏡之檢測 47 3.3掃瞄式電子顯微鏡之檢測 48 3.4掃描探針顯微鏡之檢測 49 第四章 實驗結果與討論 51 4.1濺鍍金屬試片之線寬微縮結果 51 4.1.1施加應變20%試片之線寬微縮結果 51 4.1.2施加應變40%試片之線寬微縮結果 57 4.1.3結果分析與討論 63 4.1.3.1實驗誤差分析 63 4.1.3.2金屬與基材厚度及金屬延展性之影響探討 65 4.2試片微縮後之波浪結構探討 66 第五章 結論與未來工作 71 5.1結論 71 5.2未來工作 71 參考文獻 73

    [1] X. Hong, 2001. “Introduction to Semiconductor Manufacturing Technology,” 1-18. New Jersey: Prentice-Hall Inc.
    [2] D. C. Flanders, and N. N. Efremow, “Generation of <50 nm period gratings using edge defined techniques,” Journal of Vacuum Science and Technology B 1 (1983) 1105-1108.
    [3] Y.-K. Choi, T.-J. King, and C. Hu, “A Spacer Patterning Technology for Nanoscale CMOS,” IEEE Transactions on Electron devices 49 (2002) 436-441.
    [4] S. Babin, G. Glushenko, T. Weber, T. Kaesebier, E.-B. Kley, and A. Szeghalmi, “Application of double patterning technology to fabricate optical elements: Process simulation, fabrication, and measurement,” Journal of Vacuum Science and Technology B 30 (2012) 031605-5.
    [5] S. Owa, and H. Nagasaka, “Immersion lithography: its history, current status, and future prospects,” Proceedings of SPIE 7140 (2008) 714015-12.
    [6] B. J. Lin, “Immersion lithography and its impact on semiconductor manufacturing,” Journal of Microlithography, Microfabrication, and Microsystems 3 (2004) 377-395.
    [7] D. W. Pashley, “A study of the deformation and fracture of Single-crystal gold films of high strength inside an electron microscope,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 255 (1960) 218-231.
    [8] S. L. Chiu, J. Leu, and P. S. Ho, “Fracture of metal-polymer line structures. I. Semiflexible polyimide,” Journal of Applied Physics 76 (1994) 5136–5142.
    [9] F. Spaepen, “Interfaces and stresses in thin films,” Acta Materialia 48 (2000) 31–42.
    [10] N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393 (1998) 146-149.
    [11] J. Kim, and H. H. Lee, “Wave Formation by Heating in Thin Metal Film on an Elastomer,” Journal of Polymer Science: Part B: Polymer Physics 39 (2001) 1122-1128.
    [12] M. Watanabe, H. Shirai, and T. Hirai, “Wrinkled polypyrrole electrode for electroactive polymer actuators,” Journal of Applied Physics 92 (2002) 4631-4637.
    [13] S. P. Lacour, Z. Huang, Z. Suo, S. Wagner, “Deformable
    interconnects for conformal integrated circuits,” Materials Research Society Symposium Proceedings 736 (2003) D4.8.1-D4.8.6.
    [14] S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and Performance of Thin Metal Film Interconnects for Skin-Like Electronic Circuits,” IEEE Electron Device Letters 25 (2004) 179-181.
    [15] Z.Y. Huang, W. Hong, and Z. Suo, “Nonlinear analyses of wrinkles in a film bonded to a compliant substrate,” Journal of the Mechanics and Physics of Solids 53 (2005) 2101–2118.
    [16] S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable Interconnects for Elastic Electronic Surfaces,” Proceedings of the IEEE 93 (2005) 1459-1467.
    [17] A. C. Siegel, D. A. Bruzewicz, D. B. Weibel, and G. M. Whitesides, “Microsolidics: Fabrication of Three-Dimensional Metallic Microstructures in Poly(dimethylsiloxane),” Advanced Materials 19 (2007) 727–733.
    [18] J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang, and J. A. Rogers, “Stretchable and compressible thin films of stiff materials on compliant wavy substrates,” Applied Physics Letters 93 (2008) 013109.
    [19] I. M. Graz, D. P. J. Cotton, and S. P. Lacour, “Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates,” Applied Physics Letters 94 (2009) 071902.
    [20] J. Jeong, S. Kim, J. Cho, and Y. Hong, “Stable Stretchable Silver Electrode Directly Deposited on Wavy Elastomeric Substrate,” IEEE Electron Device Letters 30 (2009) 1284-1286.
    [21] S. Chung, J. Lee, H. Song, S. Kim, J. Jeong, and Y. Honga, “Inkjet-printed stretchable silver electrode on wave structured elastomeric substrate,” Applied Physics Letters 98 (2011) 153110.
    [22] R. C. Hibbeler, 2005. “Mechanics of Materials. 6th ed.,” 107–540.
    Singapore: Prentice-Hall, Inc.
    [23] A. N. Simonov, O. Akhzar-Mehr, and G. Vdovin, “Light scanner based on a viscoelastic stretchable grating,” Optics Letters 30 (2005) 949-951.
    [24] S. Xu, “Fabrication of Metal Tunable Gratings Based on PDMS,” Journal of Materials Science & Engineering 29 (2011) 742-746.
    [25] J. Rösler, H. Harders, M. Bäker, 2007. “Mechanical Behaviour of Engineering Materials,” 257-292. New York: Springer.
    [26] 胡德, 1990. “高分子物理與機械性質(上),” 139-164. 臺北市:渤
    海堂.
    [27] S.-K. Kim, B.-G. Kim, J.-H. Lee, and C.-S. Lee, “Nanopatterning of Proteins Using Composite Nanomold and Self-Assembled Polyelectrolyte Multilayers,” Macromolecular Research 17 (2009)232-239.
    [28] http://www.teijindupontfilms.jp/english/index.html
    [29] http://www.dowcorning.com/
    [30] T.K. Shih, C.-F. Chen, J.-R. Ho, and F.-T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectronic Engineering 83 (2006) 2499–2503.
    [31] F. R. Powell, and H. H. de Lopez, “The Development of Ultrathin Polyimide for Laser Target and Other Applications,” Fusion Technology 31 (1997) 497-500.
    [32] Y. M. Jang, J. Y. Seo, and K. H. Chae, “Positive-Type
    Photosensitive Polyimide Based on a Photobase Generator Containing Oxime-Urethane Groups as a Photosensitive Compound,” Macromolecular Research 14 (2006) 300-305.
    [33] H.-M. Kim, and O.-J. Kwon, “Enhanced Properties of Transparent
    Conductive Oxide Films Prepared on PEN Substrates with a (SiO2)40(ZnO)60 Gas Barrier Layer,” Journal of the Korean Physical Society 55 (2009) 197-201.
    [34] http://www.microchemicals.com/products.html
    [35] J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility
    of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Analytical Chemistry 75 (2003) 6544-6554.
    [36] W. S. Wong, and A. Salleo, 2009. “Flexible Electronics: Materials and Applications,” 18-19. New York: Springer.
    [37] X. Deng, M. Koopman, N. Chawla, and K.K. Chawla, “Young’s modulus of (Cu, Ag)–Sn intermetallics measured by nanoindentation,” Materials Science and Engineering A364 (2004) 240–243.
    [38] D. R. Smith, and F. R. Fickett, “Low-Temperature Properties of Silver,” Journal of Research of the National Institute of Standards and Technology 100 (1995) 119-171.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE