研究生: |
楊仲元 Yang, Chung-Yuan |
---|---|
論文名稱: |
預應變於微影製程中線寬調變上之應用 Photolithography Linewidth Modification by Pre-Strained Substrate |
指導教授: |
羅丞曜
Lo, Cheng-Yao |
口試委員: |
陳榮順
Chen, Rongshun 羅丞曜 Lo, Cheng-Yao 劉振良 Liu, Cheng-Liang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 線寬微縮 、力學拉伸 、預拉伸 、後微影製程 、圖樣修改 、應變 |
外文關鍵詞: | linewidth reducing, mechanical stretching, prestretch, post-lithography, pattern modification, strain |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前半導體產業使用雙重圖形及浸潤式微影的技術來達到22 nm的製程,但由於其基本的光學及材料特性限制,這兩項製程方法也將很快地遇到瓶頸。同時,近年來各項軟性元件研究開始備受重視,在這樣的基礎上,本文提出了施加應變於軟性基板再進行微影製程來達到縮小其上結構線寬的方法。實驗的結果證明,圖樣可在不變更任何現有黃光製程設備及材料的情況下成功微縮,施加20%和40%預應變的狀況下,可分別獲得16.7%和28.6%的線寬微縮。
Currently, the industry of semiconductor uses double-pattering and immersion lithography technique to achieve 22 nm manufacturing process. But according to its fundamental optical and material characteristics limitation, this two manufacturing process will face their bottleneck soon. In the same time, researchers put more focus on many kinds of soft devices. From this ground, this thesis presented a method that applying strain on flexible substrate then doing photolithography to reduce linewidth. The experiment results proved that pattern can be successively reduced without changing any lithography equipment and material which existing now. It could have 16.7% and 28.6% linewidth reducing respectively when applying 20% and 40% strain.
[1] X. Hong, 2001. “Introduction to Semiconductor Manufacturing Technology,” 1-18. New Jersey: Prentice-Hall Inc.
[2] D. C. Flanders, and N. N. Efremow, “Generation of <50 nm period gratings using edge defined techniques,” Journal of Vacuum Science and Technology B 1 (1983) 1105-1108.
[3] Y.-K. Choi, T.-J. King, and C. Hu, “A Spacer Patterning Technology for Nanoscale CMOS,” IEEE Transactions on Electron devices 49 (2002) 436-441.
[4] S. Babin, G. Glushenko, T. Weber, T. Kaesebier, E.-B. Kley, and A. Szeghalmi, “Application of double patterning technology to fabricate optical elements: Process simulation, fabrication, and measurement,” Journal of Vacuum Science and Technology B 30 (2012) 031605-5.
[5] S. Owa, and H. Nagasaka, “Immersion lithography: its history, current status, and future prospects,” Proceedings of SPIE 7140 (2008) 714015-12.
[6] B. J. Lin, “Immersion lithography and its impact on semiconductor manufacturing,” Journal of Microlithography, Microfabrication, and Microsystems 3 (2004) 377-395.
[7] D. W. Pashley, “A study of the deformation and fracture of Single-crystal gold films of high strength inside an electron microscope,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 255 (1960) 218-231.
[8] S. L. Chiu, J. Leu, and P. S. Ho, “Fracture of metal-polymer line structures. I. Semiflexible polyimide,” Journal of Applied Physics 76 (1994) 5136–5142.
[9] F. Spaepen, “Interfaces and stresses in thin films,” Acta Materialia 48 (2000) 31–42.
[10] N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature 393 (1998) 146-149.
[11] J. Kim, and H. H. Lee, “Wave Formation by Heating in Thin Metal Film on an Elastomer,” Journal of Polymer Science: Part B: Polymer Physics 39 (2001) 1122-1128.
[12] M. Watanabe, H. Shirai, and T. Hirai, “Wrinkled polypyrrole electrode for electroactive polymer actuators,” Journal of Applied Physics 92 (2002) 4631-4637.
[13] S. P. Lacour, Z. Huang, Z. Suo, S. Wagner, “Deformable
interconnects for conformal integrated circuits,” Materials Research Society Symposium Proceedings 736 (2003) D4.8.1-D4.8.6.
[14] S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and Performance of Thin Metal Film Interconnects for Skin-Like Electronic Circuits,” IEEE Electron Device Letters 25 (2004) 179-181.
[15] Z.Y. Huang, W. Hong, and Z. Suo, “Nonlinear analyses of wrinkles in a film bonded to a compliant substrate,” Journal of the Mechanics and Physics of Solids 53 (2005) 2101–2118.
[16] S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable Interconnects for Elastic Electronic Surfaces,” Proceedings of the IEEE 93 (2005) 1459-1467.
[17] A. C. Siegel, D. A. Bruzewicz, D. B. Weibel, and G. M. Whitesides, “Microsolidics: Fabrication of Three-Dimensional Metallic Microstructures in Poly(dimethylsiloxane),” Advanced Materials 19 (2007) 727–733.
[18] J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang, and J. A. Rogers, “Stretchable and compressible thin films of stiff materials on compliant wavy substrates,” Applied Physics Letters 93 (2008) 013109.
[19] I. M. Graz, D. P. J. Cotton, and S. P. Lacour, “Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates,” Applied Physics Letters 94 (2009) 071902.
[20] J. Jeong, S. Kim, J. Cho, and Y. Hong, “Stable Stretchable Silver Electrode Directly Deposited on Wavy Elastomeric Substrate,” IEEE Electron Device Letters 30 (2009) 1284-1286.
[21] S. Chung, J. Lee, H. Song, S. Kim, J. Jeong, and Y. Honga, “Inkjet-printed stretchable silver electrode on wave structured elastomeric substrate,” Applied Physics Letters 98 (2011) 153110.
[22] R. C. Hibbeler, 2005. “Mechanics of Materials. 6th ed.,” 107–540.
Singapore: Prentice-Hall, Inc.
[23] A. N. Simonov, O. Akhzar-Mehr, and G. Vdovin, “Light scanner based on a viscoelastic stretchable grating,” Optics Letters 30 (2005) 949-951.
[24] S. Xu, “Fabrication of Metal Tunable Gratings Based on PDMS,” Journal of Materials Science & Engineering 29 (2011) 742-746.
[25] J. Rösler, H. Harders, M. Bäker, 2007. “Mechanical Behaviour of Engineering Materials,” 257-292. New York: Springer.
[26] 胡德, 1990. “高分子物理與機械性質(上),” 139-164. 臺北市:渤
海堂.
[27] S.-K. Kim, B.-G. Kim, J.-H. Lee, and C.-S. Lee, “Nanopatterning of Proteins Using Composite Nanomold and Self-Assembled Polyelectrolyte Multilayers,” Macromolecular Research 17 (2009)232-239.
[28] http://www.teijindupontfilms.jp/english/index.html
[29] http://www.dowcorning.com/
[30] T.K. Shih, C.-F. Chen, J.-R. Ho, and F.-T. Chuang, “Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectronic Engineering 83 (2006) 2499–2503.
[31] F. R. Powell, and H. H. de Lopez, “The Development of Ultrathin Polyimide for Laser Target and Other Applications,” Fusion Technology 31 (1997) 497-500.
[32] Y. M. Jang, J. Y. Seo, and K. H. Chae, “Positive-Type
Photosensitive Polyimide Based on a Photobase Generator Containing Oxime-Urethane Groups as a Photosensitive Compound,” Macromolecular Research 14 (2006) 300-305.
[33] H.-M. Kim, and O.-J. Kwon, “Enhanced Properties of Transparent
Conductive Oxide Films Prepared on PEN Substrates with a (SiO2)40(ZnO)60 Gas Barrier Layer,” Journal of the Korean Physical Society 55 (2009) 197-201.
[34] http://www.microchemicals.com/products.html
[35] J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility
of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Analytical Chemistry 75 (2003) 6544-6554.
[36] W. S. Wong, and A. Salleo, 2009. “Flexible Electronics: Materials and Applications,” 18-19. New York: Springer.
[37] X. Deng, M. Koopman, N. Chawla, and K.K. Chawla, “Young’s modulus of (Cu, Ag)–Sn intermetallics measured by nanoindentation,” Materials Science and Engineering A364 (2004) 240–243.
[38] D. R. Smith, and F. R. Fickett, “Low-Temperature Properties of Silver,” Journal of Research of the National Institute of Standards and Technology 100 (1995) 119-171.