研究生: |
李威養 Lee,WeiYang |
---|---|
論文名稱: |
利用化學氣相沈積法成長單壁奈米碳管於電子元件上之應用 Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes for Electronic Applications |
指導教授: |
蔡春鴻教授
Tsai,ChuenHorng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 111 |
中文關鍵詞: | 化學氣相沈積法 、單壁奈米碳管 、場效電晶體 |
外文關鍵詞: | CVD, SWNTs, CNFETs |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管因為其特殊的機械與電子特性,使它成為一個受到矚目的材料。奈米碳管屬於一維度的材料,更使得它在電子元件上的應用,如作為場發射電子源,原子力顯微鏡探針等,有相當大的潛力。對於奈米碳管於場效電晶體上的應用,比起其他更能凸顯其特殊電子特性。然而為了符合工業上大量製造元件的需求,傳統以電弧放電法成長奈米碳管的方式,較為不適用。為追求此工業目標,利用化學氣相沈積方法成長奈米碳管為最好之解決方法。本論文即探討利用高溫化學氣相沈積方法,並搭配特殊雙層結構催化劑組成,完成在矽基板上選區大量成長高品質的單壁奈米碳管,並進而改變參數以達到單壁奈米碳管直徑分佈控制的目標。
接著,利用半導體性的單壁奈米碳管作為場效電晶體中的傳導通道部分,完成以奈米碳管為主的場效電晶體元件製作。並探討元件結構與其雙極性傳輸特性與否的關係。除此之外,利用不同種類金屬作為元件中的源、汲極接觸金屬,也有助於我們探討奈米碳管為主的場效電晶體本身傳輸機制。
所有研究,希望能使本製程有助於提高單壁奈米碳管在工業上應用的可行性。
Carbon nanotube (CNT) has been considered as an alternative material and receiving much attention because of its excellent mechanical and unique electronic properties. The prototype one-dimensional (1D) material has its potential in nanoelectronics, field emission devices, scanning probes, high strength composites and many applications. For the applications of nanoelectronics like carbon nanotube field effect transistors (CNFETs) and field emission devices, the selective growth of high quality CNTs and pursue an economies of large-scale production of nanoelectronics depend on precise and controllable processes. This very problem can be solved in this work by using catalytic chemical vapor deposition (CCVD). A patterned double-layered catalytic configuration comprising of nickel thin film and oxide upper layer accompany high temperature chemical vapor deposition (CVD) can lead high quality single-walled carbon nanotubes (SWNTs) grow across two catalytic patterns laterally. This selective growth of high quality SWNTs on substrate will simplify the process of nanoelectronic devices and eventually lead to commercialization.
However, the electrical property of SWNTs deeply depends on their structure and is not easily to control. For some applications, it might be sufficient to sort semiconducting SWNTs. For approaching the practical application like CNFETs, however, it has been suggested that small diameter SWNTs are supposed to be an advantage to behave as semiconducting and narrow diameter distribution is needed to reduce the device variability. I present a method of modulation of double-layered catalytic configurations to control the diameters of SWNTs as small than 1.0 nm. This should demonstrate an enormous potential for an economies of large-scale production of CNFETs.
Further, I show various CNFETs devices made of CVD grown SWNTs. An undesirable ambipolar behavior and accompanying low ON/OFF ratio at high source/drain voltage of conventional CNFETs with thin oxide layer were observed in the most devices. Thus, SWNTs based devices with asymmetric gating structures comprising of a different oxide thickness for the gate oxide at the source and drain contacts. The combination processes and the resulting electrical characteristics of CNFETs with the asymmetric structures can not only converse the undesirable ambipolar behavior of CNFETs to unipolar but solve the restriction of source/drain voltage.
Another application based on CNTs is field emission devices. The common field emission devices with vertically aligned CNTs have been reported. Here, lateral SWNTs field emitters conducted on the silicon substrate can be obtained by using the same catalytic configuration and consequent CCVD. The promised field emission electrons from the bodies of SWNTs can behave a high uniform luminance. It could also be a feasible method to fabricate field emission devices.
To fabricate and characterize CNFETs with heterometallic contacts simply, dispersion as-grown SWNTs on the oxide substrates were adopted. Consequent definition of heterometallic contacts, the devices behave as unipolar CNFETs as asymmetric structure CNFETs and also pure Schottky diodes. These developed processes of fabrication of CNTs based electronics are expected to be applicable and feasible for CNTs coming to the industrial products.
S. Iijima, Nature 354, 56, 391 (1991).
Q. Chen, T. Saito, H. Yamada, K. Mastushiga: Appl. Phys. Lett. 78, 3714 (2001).
B.W. Luzzi, Z. Benes, D.E. Luzzi, J.E. Fisher, D.A. Walters, M.J. Casavant, J. Schmidt, R.M. Smalley, Appl. Phys. Lett. 77, 663 (2000).
N. Franklin, H. Dai and et al, Adv. Mater. 12, 890 (2000).
J. Kong, H. Dai and et al, Nature 395, 878 (1998).
S. J. Wind, J Vac Sci Technol B, 20, 2745 (2002)
Young-Soo Han and et al, J. Appl. Phys. 90, 5731 (2001)
Z. Chen, J. Appenzeller, J. Knoch, Y.-M. Lin and Ph. Avouris, Nano Lett. 7 1497 (2005).
Y.-C. Tseng, P. Xuan, A. Javey, R. Malloy, Q. Wang, J. Bokor and H. Dai Nano Lett. 4 123 (2004).
A. Javey, J. Guo, Q. Wang, M. Lundstrom and H. Dai, Nature 424, 654 (2003).
R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, Loson, 1998.
Y. Homma, T. Yamashita, Y. Kobayashi and T. Ogino, Physica B 323 122 (2002).
Y. Homma, Y. Kobayashi, T. Ogino and T. Yamashita, Appl. Phys. Lett. 81 2261 (2002).
Y. Kobayashi. J. Nakashima, D. Takagi and Y. Homma, Thin Solid Films 464–465 286 (2004).
H. Goo, A. Jeong, S. Suzuki and Y. Kobayashi, J. Appl. Phy. 98 124311 (2005).
H. Ago, S. Imamura, T. Okazaki, T. Saito, M. Yumura and M. Tsuji, J. Phys. Chem. B 109, 10035 (2005).
W. Wongwiriyapan, M. Katayama, T. Ikuno, N. Yamauchi, T. Mizuta, T. Murakami, S.-I. Honda, K. Oura, K. Kisoda and H. Harima, Jpn. J. Appl. Phys. 44-1A, 457 (2005).
D. Kondo, S. Sato and Y. Awano, Chem. Phys. Lett. 422, 481 (2006).
M. Ishida, H. Hongo, F. Nihey and Y. Ochiai, Jpn. J. Appl. Phys. 43-10B, L1356 (2004).
W.Y. Lee, T.S. Liao, Z.Y. Juang, C.H. Tsai, Diamond & Rela. Mater. 13, 1232 (2004)
W. Y. Lee, C. H. Weng, Z. Y. Jaung, J. F. Lai, K. C. Leou, C. H. Tsai: Diamond & Rela. Mater. 14 1852 (2005)
W.Y. Lee, Hsuan Lin, L. Gu, K.C. Leou, C.H. Tsai, Diamond & Rela. Mater. In press.
R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, and Ph. Avouris, Phys. Rev. Lett. 87 256805 (2001).
A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, R. G. Gordon, M. Lundstrom,and H. Dai, Nano Lett. 4 447 (2004)
S. Heinze, N.-P. Wang, and J. Tersoff, Phys. Rev. Lett. 95 186802 (2005).
J. Appenzeller, Y. M. Lin, J. Knoch, and Ph. Avouris, Phys. Rev. Lett. 93 196805-1 (2004).
S. J. Wind, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 91 058301-1 (2003).
J. H. Wei, H. H. Wang, H. H. Chen, M. J. Lai, M. J. Kao and M. J. Tsai, International Symposium on VLSI Technology, Systems and Applications, Proceedings of Technical Papers. (2003) IEEE Cat. No.03TH8672
S. Heinze, J. Teroff, and Ph. Avouris, Appl. Phys. Lett. 83 5038 (2003).
J. Li and Q. Zhang, Nanotechnology 16 1415(2005).
A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science 269 1550 (1995).
J. M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, and A. Châtelain, Adv. Mater. (Weinheim, Ger.) 13 184 (2001)
W.Y. Lee, Frank Yang, L.S. Fan, C.H. Tsai, Phys. Stat. Sol. (b), 244, 4293 (2007)
H.W. Kroto, J.R. Heath, S.C. O’Brien, S.C. Curl, R.E. Smalley, Nature 318, 162 (1985) 391
W.G. Zhang, H.M. Cheng, G. Su, et al. J Mater Sci Tech. 15(1):1, (1999)
T.W. Ebbessen, P.M. Ajayan, H. Hiura, K. Tanigaki, Nature 367,519, 392 (1994).
J. Liu, A. Rinzler, H. Dai, J. Hafner, R. Bradley, P. Boul, A. Lu, T. Iverson, K. Shelimov, C. Huffman, F. Rodriguez-Macias, Y. Shon, R. Lee, D. Colbert, R.E. Smalley Science 280, 1253, 392 (1998).
P. M. Ajayan, S. Iijima, Nature 361, 333 (1993).
A. Thess, R. Lee, P. Nikdaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 273,483, 393 (1996).
R. Saito, G. Dresselhaus and M. S. Dresselhaus Phys. Rev. B 61 2981 (2000)
B. I. Yakobson, R.E. Smalley: Am. Sci., 85, 324 (1997)
C.T. White and T.N. Todorov, Nature (London) 393, 240 (1998)
S.M. Sze, Physics of Semiconductor Devices, 2nd edition (John Woiley & Sons, 1981)
S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 89, 106801 (2002).
A. Hazeghi, T. Krishnamohan and H.-S. Philip Wong, IEEE Transaction on Electron Devices 54 439 (2007)
R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris: Appl. Phys. Lett. 73, 2447 (1998).
Yosuke Nosho, Yutaka Ohno, Shigeru Kishimoto and Takashi Mizutani: Appl. Phys. Lett. 86, 073105 (2005)
A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker: Science 294, 1317 (2001)
S. J. Wind, M. Radosavljevic, J. Appenzeller and Oh. Avouris: J. Vac. Sci. Technol. B 21(6), 2856 (2003).
Carbon Nanotubes, edited by M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer Verlag, Berlin, 2000).
M.S. Dresslhaus, G. Dresslhaus, A. Jorio, A.G. Souza Filho, R. Saito: Carbon 40, 2043 (2002).
J. Misewich, R. Martel, Ph. Avorious, J.C. Tsang, S. Heinze, and J. Tersoff: Science 300, 783 (2003)
C. Journet and P. Bernier, Appl. Phys. A: Mater. Sci. Process. 67, 1 (1998)
S. Iijima and T. Ichihashi, Nature 363, 605 (1993)
D. Takagi, Y. Homma, H. Hibino, S. Suzuki and Y. Kobayashi, Nano Lett. 6, 2642 (2006)
P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith and R.E. Smalley, Chem. Phys. Lett. 313, 91 (1999)
K. Hata, D. N. Futaba, K. Mizuno, T. Nanami, M. Yumura, S. Iijima: Science, 306, 1362 (2004).
J.M. Bonard, et al., Solid-State Electron. 45, 893 (2001).
L. Nilsson, et al., Appl. Phys. Lett. 76,2071 (2000).
S.T. Kim, et al., Thin Solid Films 398–399, 150 (2001).
A.V. Melechko, V.I. Merkulov, D.H. Lowndes, M.A. Guillorn, M.L. Simpson, Chem. Phys. Lett. 356, 527 (2002).
Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999).
R.Y. Zhang, Islamshah Amlani, J. Baker, J. Tresek, and Raymond K. Tsui: Nano Lett. 3, 6 (2003)
S.J. Tans, A. Verschueren, and C. Dekker: Nature (London) 393 49 (1998).
E. Flahaut, A. Peigney, Ch. Laurent and A. Rousset J. Mater. Chem. 10 249 (2000)
H.D. Sun, Z.K. Tang, J. Chen, G. Li: Appl. Phys. A 69 381 (1999)
P. Hu, X. Wang, Y. Liu, B. Wang, D. Zhu: Aynthetic Metals 135-136 833 (2003)
R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B. 61 2981 (2000).
R.V. Seidel, A.P. Granham, B. Rajasekharan, E. Unger, M. Liebau, G.S. Duesberg, F. Kreupl, and W. Hoenlein: J. Appl. Phys. 96 694 (2004)
Y. Zhou, A. Gaur, S-H. Hur, C. Kocabas, M. A. Meitl, M. Shim and John A. Rogers: Nano Lett. 4 2031 (2004).
S. N. Kim, Z. Luo and F. Papadimitrakopoulos, Nano Lett. 5 2500 (2005).
K. H. An, J. S. Park, C.-M. Yang, S. Y. Jeong, S. C. Lim, C. Kang, J.-H. Son, M. S. Jeong and Y. H. Lee, J. Am. Chem. Soc. 127 5196 (2005).
M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour and R. E. Smalley, Science 301 1519 (2003).
R. Krupke, F. Hennrich, H. v. Löhneysen and M. M. Kappes, Science 301 344 (2003).
R. Krupke, F. Hennrich, M. M. Kappes and H. v. Löhneysen, Nano Lett. 4 1395 (2004).
Z. Y. Juang, I. P. Chien, J. F. Lai, T. S. Lai and C. H. Tsai, Diamond Relat. Mater. 13, 1203 (2004).
Z. Y. Juang, J. F. Lai, C. H. Weng, J. H. Lee, H. J. Lai, T. S. Lai and C. H. Tsai, Diamond Relat. Mater. 13, 2140 (2004).
A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus and M. S. Dresselhaus, Phy. Rev. Lett. 86, 1118 (2001)
A. Brunet-Bruneau and J. Rivory, B. Rafin, J. Y. Robic and P. Chaton, J. Appl. Phys. 82(3), 1330 (1997).
Y. Zhang, Y. Li, W. Kim, D. Wang and H. Dai, Appl. Phys. A 74, 325 (2002).
M. Lin, J. Pei, Y. Tan, C. Boothroyd, K. P. Loh, E. S. Tok and Y. L. Foo, Nano Lett. 6, 449 (2006).
Y. Li, S. Peng, D. Mann, J. Cao, R. Tu, K. J. Cho and H. Dai, J. Phys. Chem. B 109 6968 (2005).
Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, Science 285 1719 (1999).
S. Heinze, J. Tersoff and Ph. Avouris, Appl. Phys. Lett. 83 5038 (2003).
Y. M. Lin, J. Appenzeller, and Ph. Avouris, Nano Lett. 5 (2004) 947
V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris: Nano Lett. 1 453(2001)
V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris: Appl. Phys. Lett. 80 2773 (2002)
S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller and Ph. Avouris: Phys. Rev. Lett. 89 106801 (2002)
M. Shim, J.H. Back, T. Ozel and K.-W. Kwon: Phys. Rev. B 71,205411 (2005)
Takafumi Kamimura and Kazuhiko Matsumoto: Jpn. J. Appl. Phys. 44 1603 (2005).
M. S. Fuhrer et al., Nano Lett. 2 755 (2002).
M. Radosavljevic et al., Nano Lett. 2 761 (2002).
Woong Kim, Ali Javey, Ophir Vermesh, Qian Wang, Yiming Li and Hongjie Dai: Nano lett., 3, 193 (2003)
Y. Woo, G. S. Duesberg and S. Roth, Nanotechnology 18 1 (2007).
D. Mann, A. Javey , J. Kong , Q. Wang and H. Dai, Nano Lett. 3 1541 (2003).
W.A. De Heer, A. Chatelain, and D. Ugarte, Science 270 1179 (1995).
David R. Whaley, Bartley M. Gannon, Carl R. Smith, Carter M. Armstrong, and Capp A. Spint, IEEE Trans. Plasma Sci. 28 727 (2000).
R. Rosen, W. Simendinger, C. Debbault, H. Shimoda, L. Fleming, B. Stoner and O. Zhou, Appl. Phys. Lett. 76 1197 (2000).
W. B. Choi, D.S. Chung, J.H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park and J. M. Kim, Appl. Phys. Lett. 75 3129 (1999).
S. Uemura, T. Nagasako, J. Yotani, T. Shimojo, Y. Saito, SID ‘98 Digest 1052 (1998).
N.S. Lee, J. Park, S. Han, J. Ihm, Chem. Phys. Lett. 8 505 (2001).
N. Kim, Z. Luo and F. Papadimitrakopoulos, Nano Lett. 5 2500 (2005).
K. H. An, J. S. Park, C.-M. Yang, S. Y. Jeong, S. C. Lim, C. Kang, J.-H. Son, M. S. Jeong and Y. H. Lee, J. Am. Chem. Soc. 127 5196 (2005).
M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R.H. Hauge, J. M. Tour and R. E. Smalley, Science 301 1519 (2003).
J. S. Kim, K. S. Ahn, C. O. Kim, and J. P. Hong, Appl. Phys. Lett. 82 1607 (2003).
C. Y. Zhi, X. D. Bai, and E. G. Wang, Appl. Phys. Lett. 81 1690 (2002).
K. S. Ahn, J. S. Kim, C. O. Kim, and J. P. Hong, Carbon 41 2481 (2003).
C. H. Weng, K. C. Leou, H. W. Wei, Z. Y. Juang, M. T. Wei, C. H. Tung, and C. H. Tsai, Appl. Phys. Lett. 85 4732 (2004).
Gang Zhou, Wenhui Duan, and Binglin Gu, Appl. Phys. Lett. 79 836 (2001).
Gang Zhou, Yoshiyuki Kawazoe, Chem. Phys. Lett. 350 386 (2001).
R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).
J. M. Bonard, K. A. Dean, B. F. Coll, and C. Klinke, Phys. Rev. Lett. 89, 197602 (2002).
H. M. Manohara, E. W. Wong, E. Schlecht, B. D. Hunt, and P. H. Siegel, Nano Lett. 5, 1469 (2005)
M. H. Yang, K. B. K. Teo, W. I. Milne and D. G. Hasko, Appl. Phys. Lett. 87,253116 (2005)
J.-Y. Park, S. Rosenbalt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. A. Arias, P. W. Brouwer and P. L. McEuen, Nano Lett. 4 517 (2004)
J. Zhao, A. Buldum, J. Han and J. P. Lu, Nanotechnology 13 195 (2002)