簡易檢索 / 詳目顯示

研究生: 蘇俊憲
Su, Chun Hsien
論文名稱: 含芘分子起始劑在光誘發原子轉移自由基聚合之應用與含芘分子之聚苯乙烯的螢光放光增強現象
Pyrene Based Initiator in Photo-induced ATRP and Persistently Enhanced Fluorescence Observed from Poly(styrene) with Pyrene Chromophore
指導教授: 彭之皓
Peng, Chi How
口試委員: 韓建中
陳俊太
彭之皓
Han, Chien Chung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 118
中文關鍵詞: 原子轉移自由基聚合反應光誘發原子轉移自由基聚合反應苯乙烯螢光螢光聚合物奈米中空管柱陽極氧化鋁
外文關鍵詞: ATRP, photo-induced ATRP, Styrene, Fluorescence, dye-labeled polymer, nanotube structure, AAO
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文大致分為三部分,第一部份是先合成含有芘發光團的分子來作為ATRP或是Photo-induced ATRP的起始劑。經由聚合反應可以獲得良好控制的含芘螢光高分子 (Mw / Mn = 1.20 ~ 1.30),或是可發螢光之嵌段共聚物。光誘發的 ATRP 方法,可使用在不同的單體 (MMA, MA, St) 上,並有高效率或是節能等優勢。在光誘發之ATRP 中,所需的能量來源甚至可以只使用低功率手持式的紫外燈便可取代傳統使用的油浴或是加熱等方法。
    在第二部份裡,光誘發的聚合反應中發現了光聚合之含芘聚苯乙烯的螢光放光現象較其他使用同製程之聚合物更高。為了探討其放光增強的原因,聚合物的單體種類、發光團種類、合成方法、結構與穩定性、及溶劑比例都進行調整與比較。發現光聚合得到之含芘聚苯乙烯的螢光強度確實高於其他含芘之聚合物,且螢光性質產生些許紅位移現象,其原因並非分子穩定性、立體異構性等因素,也與芘發光團和苯乙烯溶劑的選擇有關,其螢光強度上升幅度也和苯乙烯溶劑的比例成正比關係。
    第三部份,則把各種含芘之螢光聚合物藉由通過陽極氧化鋁模板來形成奈米中空管柱結構。利用掃描式穿隧顯微鏡可證實聚合物之奈米中空管柱結構。結構與螢光性質的關係同時也被探討。


    Chromophoric initiator containing pyrene moiety was synthesized and was used to the normal and photo-induced ATRP of various monomers to obtain the flourscent polymer. These well-controlled dye-labeled polymer showed a low polydispersity (Mw / Mn = 1.20 ~ 1.30), and could form the diblock copolymers.
    Photo-induced or Photo-mediated ATRP was performed in our study. Photo-induced ATRP is an efficient or economical method for methyl acrylate, methyl methacrylate and styrene polymerization. The photo-mediated polymerization could use the handheld UV light as the low energy source to replace the traditional oil bath or the high temperature condition.
    Besides, during the photo-induced ATRP process we found the poly(styrene) had the strongest fluorescence than other polymers. For this reason, we compared the fluorescence of dye-labeled polymer by ATRP and photo-induced ATRP. Moreover we designed some control experiments to illustrate and explain the strongly fluorescent effect in poly(styrene) by photo-induced ATRP.
    Meanwhile, we used the homo or diblock copolymer with chromophore to form the nanotube polymer structure by AAO (anodic aluminum oxide) template. The nanotube structure could be observed by the SEM (Scanning electron microscopy) and the fluorescence of nanotube polymer structure was also discussed.

    目錄 Abstract I 摘要 III 謝誌 IV 目錄 V 圖 X 式 XVIII 附錄 XIX 第一章 緒論 1 1-1 可控自由基聚合反應 2 1-2 可控自由基聚合反應方法 4 1-2-1 氮氧自由基聚合反應 (Nitroxide-mediated radical polymerization; NMP) 4 1-2-2 可逆加成-斷裂鏈轉移聚合反應(Reversible addition-fragmentation chain-transfer radical polymerization; RAFT polymerization) 5 1-2-3 原子轉移自由基聚合反應 (Atom transfer radical polymerization; ATRP) 6 1-2-4 電子轉移活化(再生)原子轉移自由基聚合反應 (Activators (re)generated by electron transfer for atom transfer radical polymerization; A(R)GET ATRP) 10 1-2-5 起始劑持續活化再生原子轉移自由基聚合反應 (Initiators for continuous activator regeneration atom transfer radical polymerization; ICAR ATRP) 11 1-2-6 輔助活化劑與還原劑原子轉移自由基聚合反應 (Supplemental activator and reducing agent for atom transfer radical polymerization; SARA ATRP) 12 1-2-7 電化學引發原子轉移自由基聚合反應 (Electrochemically mediated atom transfer radical polymerization; eATRP) 13 1-3 利用可見光或紫外光來達到原子轉移自由基聚合 (Photo-ATRP) 15 1-3-1 直接法 (directly method or ARGET&ICAR ATRP) 15 1-3-2 間接法 (indirectly method or SR&NI ATRP) 17 1-4 芘 (Pyrene) 發光團的性質及放光原理 18 1-5 螢光放光增益或損失之原理及應用 19 1-6 研究目的及動機 20 第二章 芘發光團之起始劑在光誘發原子轉移自由基聚合的應用與影響 (The Research of Photo-ATRP Using the Pyrene-Based Photoinitiator) 21 2-1 前言 22 2-2 實驗部分 23 2-2-1 化學藥品 23 2-2-2 含芘分子之起始劑合成 24 2-2-3 聚合反應 26 2-3 利用光誘發自由基聚合鑑定含芘分子起始劑受光之反應性 27 2-4 光誘發原子轉移自由基聚合嵌有芘之聚苯乙烯、丙烯酸甲酯、甲基丙烯酸甲酯 29 2-5 光誘發電子再生活化原子轉移自由基聚合嵌有芘之聚苯乙烯、丙烯酸甲酯、甲基丙烯酸甲酯 32 2-6 光誘發原子轉移自由基反應之燈源明暗交錯測試 34 2-7 結論 35 第三章 含芘分子螢光起始劑之光誘發強螢光現象及探討 (Discussion of Photoinduced Fluorescent Effect by Using Chromophoric Photoinitiator Contained Pyrene Molecule) 36 3-1 前言 37 3-2 實驗部分 39 3-2-1化學藥品 39 3-2-2 含萘分子之起始劑合成 41 3-2-3 核磁共振光譜樣品配置 42 3-2-4 螢光放光及可見/紫外光光譜樣品配置 42 3-2-5 聚合物產物純化過程及加熱測試 43 3-3 聚合過程中螢光變化之趨勢圖 44 3-4 強螢光聚合物純化及加熱測試和立體異構性上之鑑定 48 3-5 去除高分子結構因素單純探討芘起始劑和苯乙烯間的螢光現象 52 3-6 不同溶劑或更換不同發光團及不同比例溶劑之螢光影響 54 3-7 探討芘之螢光起始劑及其溶劑受光照後之紫外/可見光譜. 59 3-8 不同激發波長對於光誘發螢光增強現象影響與量子產率. 62 3-9 結論. 67 第四章 螢光聚合物之奈米中空管柱結構材料合成及探討 (Discussion of Photoinduced Fluorescent Effect by Using Chromophoric Photoinitiator Contained Pyrene Molecule) 68 4-1 前言. 69 4-2 實驗部分. 71 4-2-1 化學藥品 71 4-2-2 嵌芘發光團之聚合物及其嵌段共聚物合成步驟 72 4-3 嵌段共聚物之合成 75 4-4 合成及鑑定嵌芘發光團之聚合物或嵌段共聚物的奈米中空管柱結構 79 4-5 觀察嵌段共聚物的相分離狀態 83 4-6 改變聚合物結構後的螢光放光表現 87 4-7 結論 89 儀器 90 附錄 94 參考文獻 115

    1. Peng, C.-H.; Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B., Polym. Chem. 2013, 4, 3098–3104.
    2. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B., Chem. Rev. 2006, 106, 3936-3962.
    3. Yamago, S.; Iida, K.; Yoshida, J.-i., J. Am. Chem. Soc. 2002, 124, 2874-2875.
    4. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2012, 65, 985-1076.
    5. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2009, 62, 1402-1472.
    6. Perrier, S.; Takolpuckdee, P., J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5347-5393.
    7. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2005, 58, 379-410.
    8. Georges, M. K.; Veregin, R. P.; Kazmaier, P. M.; Hamer, G. K., Macromolecules 1993, 26, 2987-2988.
    9. Wang, J.-S.; Matyjaszewski, K., J. Am. Chem. Soc. 1995, 117, 5614-5615.
    10. Percec, V.; Barboiu, B., Macromolecules 1995, 28, 7970-7972.
    11. Matyjaszewski, K.; Xia, J., Chem. Rev. 2001, 101, 2921-2990.
    12. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Macromolecules 1995, 28, 1721-1723.
    13. Kamigaito, M.; Ando, T.; Sawamoto, M., Chem. Rev. 2001, 101, 3689-746.
    14. Cunningham, M. F., Prog. Polym. Sci. 2008, 33, 365-398.
    15. Ouchi, M.; Terashima, T.; Sawamoto, M., Chem. Rev. 2009, 109, 4963-5050.
    16. Rosen, B. M.; Percec, V., Chem. Rev. 2009, 109, 5069-5119.
    17. Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G., Macromolecules 1998, 31, 5559-5562.
    18. Braunecker, W. A.; Matyjaszewski, K., Prog. Polym. Sci. 2007, 32, 93-146.
    19. Gao, H.; Matyjaszewski, K., Prog. Polym. Sci. 2009, 34, 317-350.
    20. Chen, H.-Y.; Lahann, J., Langmuir 2010, 27, 34-48.
    21. Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K., Prog. Polym. Sci. 2012, 37, 18-37.
    22. Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K., Chem. Rev. 2012, 112, 3959-4015.
    23. Matyjaszewski, K.; Tsarevsky, N. V., Nat. Chem. 2009, 1, 276-288.
    24. Matyjaszewski, K., Macromolecules 2012, 45, 4015-4039.
    25. Hawker, C. J.; Bosman, A. W.; Harth, E., Chem. Rev. 2001, 101, 3661-3688.
    26. Debuigne, A.; Caille, J. R.; Jérôme, R., Angewandte Chemie 2005, 117, 1125-1128.
    27. Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B., Macromolecules 2008, 41, 2368-2373.
    28. Tang, W.; Tsarevsky, N. V.; Matyjaszewski, K., J. Am. Chem. Soc. 2006, 128, 1598-1604.
    29. Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N. V.; Coote, M. L.; Matyjaszewski, K., J. Am. Chem. Soc. 2008, 130, 10702-10713.
    30. Pintauer, T.; Matyjaszewski, K., Chem. Rev. 2008, 37, 1087-1097.
    31. Wang, Y.; Matyjaszewski, K., Macromolecules 2010, 43, 4003-4005.
    32. Deng, Z.; Guo, J.; Qiu, L.; Yuan, C.; Zhou, Y.; Yan, F., J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 664-671.
    33. Duquesne, E.; Habimana, J.; Degée, P.; Dubois, P., Macromolecules 2005, 38, 9999-10006.
    34. Tang, W.; Matyjaszewski, K., Macromolecules 2006, 39, 4953-4959.
    35. Horn, M.; Matyjaszewski, K., Macromolecules 2013, 46, 3350.
    36. Seeliger, F.; Matyjaszewski, K., Macromolecules 2009, 42, 6050-6055.
    37. Zhong, M.; Matyjaszewski, K., Macromolecules 2011, 44, 2668–2677.
    38. Jakubowski, W.; Matyjaszewski, K., Macromolecules 2005, 38, 4139-4146.
    39. Kwak, Y.; Magenau, A. J.; Matyjaszewski, K., Macromolecules 2011, 44, 811-819.
    40. Jakubowski, W.; Matyjaszewski, K., Angew. Chem. Int. Ed. 2006, 118, 4594-4598.
    41. Min, K.; Gao, H. F.; Matyjaszewski, K., Macromolecules 2007, 40, 1789-1791.
    42. Zhang, Y. Z.; Wang, Y.; Matyjaszewski, K., Macromolecules 2011, 44, 683-685.
    43. Kwak, Y.; Matyjaszewski, K., Polym. Int. 2009, 58, 242-247.
    44. Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W. A.; Tsarevsky, N. V., Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15309-15314.
    45. Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S., J. Am. Chem. Soc. 2006, 128, 14156-14165.
    46. Zhang, Q.; Wilson, P.; Li, Z.; McHale, R.; Godfrey, J.; Anastasaki, A.; Waldron, C.; Haddleton, D. M., J. Am. Chem. Soc. 2013, 135, 7355–7363.
    47. Zhang, Y.; Wang, Y.; Peng, C.-h.; Zhong, M.; Zhu, W.; Konkolewicz, D.; Matyjaszewski, K., Macromolecules 2011, 45, 78-86.
    48. Peng, C.-H.; Zhong, M.; Wang, Y.; Kwak, Y.; Zhang, Y.; Zhu, W.; Tonge, M.; Buback, J.; Park, S.; Krys, P., Macromolecules 2013, 46, 3803–3815.
    49. Wang, Y.; Zhong, M.; Zhu, W.; Peng, C.-H.; Zhang, Y.; Konkolewicz, D.; Bortolamei, N.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K., Macromolecules 2013, 46, 3793–3802.
    50. Zhong, M.; Wang, Y.; Krys, P.; Konkolewicz, D.; Matyjaszewski, K., Macromolecules 2013, 46, 3816–3827.
    51. Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K., Science 2011, 332, 81-84.
    52. Li, B.; Yu, B.; Huck, W. T.; Liu, W.; Zhou, F., J. Am. Chem. Soc. 2013, 135, 1708-1710.
    53. Dadashi‐Silab, S.; Atilla Tasdelen, M.; Yagci, Y., J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2878-2888.
    54. Yagci, Y.; Jockusch, S.; Turro, N. J., Macromolecules 2010, 43, 6245-6260.
    55. Mosnáček, J.; Ilčíková, M. t., Macromolecules 2012, 45, 5859-5865.
    56. Konkolewicz, D.; Schröder, K.; Buback, J.; Bernhard, S.; Matyjaszewski, K., ACS Macro Letters 2012, 1, 1219-1223.
    57. Anastasaki, A.; Nikolaou, V.; Simula, A.; Godfrey, J.; Li, M.; Nurumbetov, G.; Wilson, P.; Haddleton, D. M., Macromolecules 2014, 47, 3852-3859.
    58. Anastasaki, A.; Nikolaou, V.; Zhang, Q.; Burns, J.; Samanta, S. R.; Waldron, C.; Haddleton, A. J.; McHale, R.; Fox, D.; Percec, V., J. Am. Chem. Soc. 2014, 136, 1141-1149.
    59. Ribelli, T. G.; Konkolewicz, D.; Bernhard, S.; Matyjaszewski, K., J. Am. Chem. Soc. 2014, 136, 13303-13312.
    60. Yagci, Y.; Tasdelen, M. A.; Jockusch, S., Polymer 2014, 55, 3468-3474.
    61. Taskin, O. S.; Yilmaz, G.; Tasdelen, M. A.; Yagci, Y., Polym. Int. 2014, 63, 902-907.
    62. Østergaard, M. E.; Guenther, D. C.; Kumar, P.; Baral, B.; Deobald, L.; Paszczynski, A. J.; Sharma, P. K.; Hrdlicka, P. J., Chem. Commun. 2010, 46, 4929-4931.
    63. Zhao, M.; Yang, L.; Zhang, R.; Dong, J.; Dong, H.; Wen, Y.; Zhan, X.; Wang, G.; Lu, Y.; Wang, G., Polymer 2013, 54, 297-302.
    64. Winnik, F. M., Chem. Rev. 1993, 93, 587-614.
    65. Kraskouskaya, D.; Bancerz, M.; Soor, H. S.; Gardiner, J. E.; Gunning, P. T., J. Am. Chem. Soc. 2014, 136, 1234-1237.
    66. Jang, H.-S.; Zhao, J.; Lei, Y.; Nieh, M.-P., ACS applied materials & interfaces 2014, 6, 14801-14811.
    67. Fujii, A.; Sekiguchi, Y.; Matsumura, H.; Inoue, T.; Chung, W.-S.; Hirota, S.; Matsuo, T., Bioconjugate Chem. 2015, 26, 537-548.
    68. Beyazkilic, P.; Yildirim, A.; Bayindir, M., ACS applied materials & interfaces 2014, 6, 4997-5004.
    69. Feng, X.; Hu, J.-Y.; Iwanaga, F.; Seto, N.; Redshaw, C.; Elsegood, M. R.; Yamato, T., Org. Lett. 2013, 15, 1318-1321.
    70. Callan, J. F.; de Silva, A. P.; Magri, D. C., Tetrahedron 2005, 61, 8551-8588.
    71. Qian, X.; Xiao, Y.; Xu, Y.; Guo, X.; Qian, J.; Zhu, W., Chem. Commun. 2010, 46, 6418-6436.
    72. Goswami, S.; Sen, D.; Das, N. K., Org. Lett. 2010, 12, 856-859.
    73. Sapsford, K. E.; Berti, L.; Medintz, I. L., Angew. Chem. Int. Ed. 2006, 45, 4562-4589.
    74. Shao, J.; Sun, H.; Guo, H.; Ji, S.; Zhao, J.; Wu, W.; Yuan, X.; Zhang, C.; James, T. D., Chemical Science 2012, 3, 1049-1061.
    75. Jacky, W.; SingáKwok, H.; ZhongáTang, B., Chem. Commun. 2001, 1740-1741.
    76. Hong, Y.; Lam, J. W.; Tang, B. Z., Chem. Commun. 2009, 4332-4353.
    77. Hong, Y.; Lam, J. W.; Tang, B. Z., Chem. Soc. Rev. 2011, 40, 5361-5388.
    78. Zhang, R.; Yuan, Y.; Liang, J.; Kwok, R. T.; Zhu, Q.; Feng, G.; Geng, J.; Tang, B. Z.; Liu, B., ACS applied materials & interfaces 2014, 6, 14302-14310.
    79. Yuan, W. Z.; Gong, Y.; Chen, S.; Shen, X. Y.; Lam, J. W.; Lu, P.; Lu, Y.; Wang, Z.; Hu, R.; Xie, N., Chem. Mater. 2012, 24, 1518-1528.
    80. Ciftci, M.; Tasdelen, M. A.; Li, W.; Matyjaszewski, K.; Yagci, Y., Macromolecules 2013, 46, 9537-9543.
    81. K. Vegesna, G.; Sripathi, S. R.; Zhang, J.; Zhu, S.; He, W.; Luo, F.-T.; Jahng, W. J.; Frost, M.; Liu, H., ACS applied materials & interfaces 2013, 5, 4107-4112.
    82. Cheng, X.; Tang, R.; Jia, H.; Feng, J.; Qin, J.; Li, Z., ACS applied materials & interfaces 2012, 4, 4387-4392.
    83. Zhao, E.; Lam, J. W.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Huang, X.; Hao, J.; Tang, B. Z., Macromolecules 2014.
    84. Xu, Q.; Lee, S.; Cho, Y.; Kim, M. H.; Bouffard, J.; Yoon, J., J. Am. Chem. Soc. 2013, 135, 17751-17754.
    85. Malashikhin, S.; Finney, N. S., J. Am. Chem. Soc. 2008, 130, 12846-12847.
    86. Zhao, K.; Cheng, Z.; Zhang, Z.; Zhu, J.; Zhu, X., Polym. Bull. 2009, 63, 355-364.
    87. Zhou, N.; Lu, L.; Zhu, J.; Yang, X.; Wang, X.; Zhu, X.; Zhang, Z., Polymer 2007, 48, 1255-1260.
    88. Yan, J. J.; Wang, Z. K.; Lin, X. S.; Hong, C. Y.; Liang, H. J.; Pan, C. Y.; You, Y. Z., Adv. Mater. 2012, 24, 5617-5624.
    89. Martín, J.; Maiz, J.; Sacristan, J.; Mijangos, C., Polymer 2012, 53, 1149-1166.
    90. Martín, J.; Mijangos, C., Langmuir 2008, 25, 1181-1187.
    91. Steinhart, M.; Wendorff, J.; Greiner, A.; Wehrspohn, R.; Nielsch, K.; Schilling, J.; Choi, J.; Gösele, U., Science 2002, 296, 1997-1997.
    92. Conlon, P.; Yang, C. J.; Wu, Y.; Chen, Y.; Martinez, K.; Kim, Y.; Stevens, N.; Marti, A. A.; Jockusch, S.; Turro, N. J., J. Am. Chem. Soc. 2008, 130, 336-342.
    93. Xu, C.; Zhou, R.; Zhang, R.; Yang, L.; Wang, G., ACS Macro Letters 2014, 3, 845-848.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE