簡易檢索 / 詳目顯示

研究生: 許峻源
Hsu, Chun-Yuan
論文名稱: 量子事件識別與量子事件學習程序之模擬
Quantum Event Identification and Simulation of Quantum Event-Learning Procedures
指導教授: 林瀚仚
Lin, Han-Hsuan
口試委員: 韓永楷
Hon, Wing-Kai
賴青沂
Lai, Ching-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 48
中文關鍵詞: 量子量子事件測量
外文關鍵詞: Quantum, Quantum Event, Measurement
相關次數: 點閱:37下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子斷層掃描(quantum state tomography)在量子資訊科學中扮演關鍵
    角色,然而其所需的樣本數通常隨系統維度過度快速的增加,導致實務應
    用上極其困難。此一挑戰促使研究者尋求更有效率的量子學習辦法,以
    避免重建全部的量子態。其中,Scott Aaronson 提出的陰影斷層(shadow
    tomography)即為一例[1]。陰影斷層的目標在於對一組給定的二元結果測
    量(two-outcome measurements)之「陰影」進行估計,而非重建整個量子
    態。因此當所需處理的陰影數目不多時,陰影斷層可在樣本複雜度上呈現
    指數級的改善,相較於完整的量子斷層掃描可大幅降低樣本需求。受到陰
    影斷層的啟發,我們提出量子事件識別(Quantum Event Identification, QEI)
    問題,其目的在於以更少樣本數來辨識具高成功率的測量。不同於著重全
    局精確度(對所有可觀察量均有良好估計)的標準陰影斷層,QEI 著重於每
    個測量本身的成功率。透過利用可預期之接受機率落差,QEI 在理論上可
    於樣本複雜度上優於陰影斷層。為評估QEI 的複雜度,我們進行各種測量
    程序的模擬,靈感來自Adam Bene Watts 與John Bostanci 所提出的量子事件
    搜尋(quantum event finding)方法[2]。在這些方法中,即便在低維度條件
    下只利用單一未知態的複本,仍可穩定達成約60% 的成功率。我們亦將經
    典陰影(classical shadow)及相關技術應用於QEI,探討其相對優勢,並驗
    證1.0.4 中提出之事件搜尋界限。綜上,本研究結果顯示,QEI 極具潛力成
    為高效利用資源的量子測量預測策略,同時也為進一步的理論精進及更可
    擴張的計算方法研究,提供了未來發展方向。


    Quantum state tomography is a central task in quantum information science, but it typically requires a prohibitively large number of samples that scale poorly with system dimension. This challenge has motivated the exploration of more efficient quantum learning problems that avoid full state reconstruction. One of such problems is shadow tomography introduced by Scott Aaronson [1], which requires the estimations of the shadow, a given set of two-outcome measurements. Consequently, when the number of shadows are not too large, shadow tomography was shown to be solvable in exponentially lower sample complexity compared to full quantum state tomography. Inspired by shadow tomography, we introduce the Quantum Event Identification (QEI) problem, which targets identifying measurements with high success rates while requiring fewer samples. Unlike standard shadow tomography, which focuses on obtaining global accuracy across all observables, QEI emphasizes per-measurement success. Exploiting a promised gap in acceptance probabilities, QEI can potentially achieve lower sample complexity compared to shadow tomography. We evaluate the complexity of QEI through simulations of various measurement procedures inspired by procedures of quantum event finding introduced by Adam Bene Watts and John Bostanci[2]. These procedures achieve stable success rates of around 60% with only a single copy of the unknown state in low-dimensional settings. We also adapt classical shadow and related techniques to QEI, examining their relative strengths and validating the event-finding bounds introduced in Section 1.0.4. Our results highlight the potential of QEI as a resource-efficient strategy for quantum measurement prediction, suggesting avenues for theoretical refinements and more scalable computational
    methods.

    Acknowledgements 摘要i Abstract ii 1 Introduction 1 1.1 Quantum Event Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Preliminary 11 3 Method 15 3.1 Measurements Generating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.1 Procedure 3: Special Blended measurement for QEI . . . . . . . . . . 19 3.2.2 Procedure 4: Special Random measurement for QEI . . . . . . . . . . 20 3.2.3 Procedure 5: Interweaving Blended measurement for QEI . . . . . . . 21 3.2.4 Procedure 6: Three-outcome Blended measurement for QEI . . . . . . 23 3.2.5 Procedure 7: Optimizing Blended measurement for QEI . . . . . . . . 25 3.2.6 Procedure 8: Classical Shadow for QEI . . . . . . . . . . . . . . . . . 27 4 Result 29 4.1 Simulation Premise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 The Validity of the Bounds in the Event Finding Problem . . . . . . . . 31 4.2.2 The Efficiency of Each Procedure for the Quantum Event Identification Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.3 The effect of constraints of the classical shadow . . . . . . . . . . . . . 38 4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 A The lower bound of the sample complexity of Classical Gapped Shadow Tomography 43 References 47

    [1] S. Aaronson, “Shadow tomography of quantum states,” in Proceedings of the 50th Annual
    ACM SIGACT Symposium on Theory of Computing (STOC 2018), pp. 325–338, ACM,
    2018.
    [2] A. B. Watts and J. Bostanci, “Quantum event learning and gentle random measurements,”
    in 15th Innovations in Theoretical Computer Science Conference (ITCS 2024), vol. 287
    of Leibniz International Proceedings in Informatics (LIPIcs), pp. 97:1–97:22, Schloss
    Dagstuhl–Leibniz-Zentrum für Informatik, 2024.
    [3] E. Schrödinger, “Quantisierung als eigenwertproblem,” Annalen der Physik, vol. 79,
    pp. 361–376, 1926.
    [4] J. B. Altepeter, D. F. V. James, and P. G. Kwiat, “Quantum state tomography,” in Quantum
    State Estimation (M. G. A. Paris and J. Řeháček, eds.), vol. 649 of Lecture Notes in
    Physics, pp. 113–145, Springer, 2004.
    [5] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting
    an unknown quantum state via dual classical and einstein-podolsky-rosen channels,”
    Physical Review Letters, vol. 70, pp. 1895–1899, March 1993.
    [6] K. Vogel and H. Risken, “Determination of the density matrix via the Wigner function of
    the light field,” Physical Review A, vol. 40, pp. 2847–2849, 1989.
    [7] Z. Hradil, “Quantum-state estimation,” Physical Review A, vol. 55, p. R1561, March
    1997.
    [8] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the wigner
    distribution and the density matrix of a light mode using optical homodyne tomography:
    Application to squeezed states and the vacuum,” Physical Review Letters, vol. 70, p. 1244,
    March 1993.
    [9] J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu, “Sample-optimal tomography of quantum
    states,” IEEE Transactions on Information Theory, vol. 63, no. 9, pp. 5628–5641, 2020.
    [10] H.-Y. Huang, R. Kueng, and J. Preskill, “Predicting many properties of a quantum system
    from very few measurements,” Nature Physics, vol. 16, pp. 1050–1057, 2020.
    [11] C. Bădescu and R. O’Donnell, “Improved quantum data analysis,” in Proceedings of
    the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC 2021),
    pp. 1398–1411, ACM, 2021.
    [12] A. W. Harrow, C. Y.-Y. Lin, and A. Montanaro, “Sequential measurements, disturbance
    and property testing,” in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
    on Discrete Algorithms (SODA 2017), pp. 1598–1611, Society for Industrial and
    Applied Mathematics, 2017.
    [13] S. Aaronson, “QMA/qpoly ⊆ PSPACE/poly: de-merlinizing quantum protocols,” in Proceedings
    of the 21st Annual IEEE Conference on Computational Complexity (CCC 2006),
    (Prague, Czech Republic), pp. 261–273, IEEE, July 2006.
    [14] S. Aaronson, “Quantum copy-protection and quantum money,” in 2009 24th Annual IEEE
    Conference on Computational Complexity, (Paris, France), pp. 229–242, IEEE, July 2009.
    [15] S. Aaronson, “The learnability of quantum states,” Proceedings of the Royal Society A:
    Mathematical, Physical and Engineering Sciences, vol. 463, pp. 3089–3114, December
    2007.
    [16] V. Wei, W. A. Coish, P. Ronagh, and C. A. Muschik, “Neural-shadow quantum state tomography,”
    Physical Review Research, vol. 6, p. 023250, June 2024.
    [17] Y. Quek, S. Fort, and H. K. Ng, “Adaptive quantum state tomography with neural networks,”
    npj Quantum Information, vol. 7, p. 105, June 2021.
    [18] J. Lee, “Lecture 11: Sublinear algorithms for big data,” 2020. Available at:
    https://cs.brown.edu/courses/csci1951-w/lec/lec

    QR CODE