研究生: |
陳仕閔 Chen, shih min |
---|---|
論文名稱: |
以電化學分離法轉印之高潔淨石墨烯電晶體特性研究 Characteristics of High Cleanliness CVD Graphene Transistors Using Electrochemical Delamination Transfer |
指導教授: |
邱博文
Chiu, po wen |
口試委員: |
鄭舜仁
李奎毅 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 石墨烯 、電晶體 、電化學 、轉印 、潔淨 |
外文關鍵詞: | graphene, transistor, Electrochemical Delamination, transfer, Cleanliness |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯因有超高的電子遷移率特性而使其電晶體應用備受期待,但以CVD石墨烯製作出的電晶體卻因製程汙染而使遷移率大幅降低;其汙染,主要源自CVD石墨烯轉印過程中的銅箔金屬催化劑蝕刻而導致的金屬粒子雜質與水分子吸附。本論文欲透過電化學分離法快速剝離而不溶蝕銅箔的蝕刻機制,加上異丙醇介面置換,降低轉印製程的汙染並改善CVD石墨烯轉印潔淨度與電晶體品質;並以光學、穿透式電子顯微鏡與真空變溫的電晶體電性量測,分析其潔淨度改善程度。本文從實驗結果指出:電化學分離法優於一般化學蝕刻法(鹽酸與氯化鐵),使場效電洞遷移率可至1250cm2/Vs;並提出改善蝕刻與轉印製程的建議。
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon
films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
[2] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties
and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–
388, 2008.
[3] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N.
Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8,
no. 3, pp. 902–907, 2008.
[4] R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current
density of graphene nanoribbons,” Appl. Phys. Lett., vol. 94, no. 24, p. 243114,
2009.
[5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and
H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State
Commun., vol. 146, no. 9, pp. 351–355, 2008.
[6] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3,
pp. 183–191, 2007.
[7] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber,
N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency
of graphene,” Science, vol. 320, no. 5881, pp. 1308–1308, 2008.
[8] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and
K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,”
Nat. Mater., vol. 6, no. 9, pp. 652–655, 2007.
81
參考文獻參考文獻
[9] F. Schwierz, “Graphene transistors,” Nat. Nanotechnol., vol. 5, no. 7, pp. 487–496,
2010.
[10] G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced
graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol.,
vol. 3, no. 5, pp. 270–274, 2008.
[11] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,”
Nano Lett., vol. 8, no. 10, pp. 3498–3502, 2008.
[12] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for
dye-sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323–327, 2008.
[13] D. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, “Properties
of graphene: a theoretical perspective,” Adv. Phys., vol. 59, no. 4, pp. 261–482,
2010.
[14] P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano
Lett., vol. 10, no. 11, pp. 4285–4294, 2010.
[15] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, pp. 622–634,
1947.
[16] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill,
and P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science,
vol. 327, no. 5966, pp. 662–662, 2010.
[17] H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,”
IEEE Electron Device Lett., vol. 30, no. 5, pp. 547–549, 2009.
[18] X. Yang, G. Liu, A. A. Balandin, and K. Mohanram, “Triple-mode single-transistor
graphene amplifier and its applications,” ACS Nano, vol. 4, no. 10, pp. 5532–5538,
2010.
[19] Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu,
C. Dimitrakopoulos, A. Grill, P. Avouris, et al., “Wafer-scale graphene integrated
circuit,” Science, vol. 332, no. 6035, pp. 1294–1297, 2011.
82
參考文獻
[20] L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L.
Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene oxidation: thicknessdependent
etching and strong chemical doping,” Nano Lett., vol. 8, no. 7, pp. 1965–
1970, 2008.
[21] S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus,
“Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2
substrate,” Nano Lett., vol. 10, no. 12, pp. 4944–4951, 2010.
[22] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung,
E. Tutuc, et al., “Large-area synthesis of high-quality and uniform graphene films
on copper foils,” Science, vol. 324, no. 5932, pp. 1312–1314, 2009.
[23] Y.-C. Lin, C. Jin, J.-C. Lee, S.-F. Jen, K. Suenaga, and P.-W. Chiu, “Clean transfer
of graphene for isolation and suspension,” ACS Nano, vol. 5, no. 3, pp. 2362–2368,
2011.
[24] Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, “Graphene
annealing: How clean can it be?,” Nano Lett., vol. 12, no. 1, pp. 414–419, 2012.
[25] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, “Electrochemical
delamination of cvd-grown graphene film: Toward the recyclable use of
copper catalyst,” ACS Nano, vol. 5, no. 12, pp. 9927–9933, 2011.
[26] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M.
Peng, et al., “Repeated growth and bubbling transfer of graphene with millimetresize
single-crystal grains using platinum,” Nat. Commun., vol. 3, p. 699, 2012.
[27] J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson,
R. S. Ruoff, L. Colombo, R. M. Wallace, and E. M. Vogel, “Reducing extrinsic
performance-limiting factors in graphene grown by chemical vapor deposition,”
ACS Nano, vol. 6, no. 4, pp. 3224–3229, 2012.
[28] X. Liang, Z. Fu, and S. Y. Chou, “Graphene transistors fabricated via transferprinting
in device active-areas on large wafer,” Nano Lett., vol. 7, no. 12, pp. 3840–
3844, 2007.
[29] L.-H. Liu and M. Yan, “Simple method for the covalent immobilization of
graphene,” Nano Lett., vol. 9, no. 9, pp. 3375–3378, 2009.
83
參考文獻參考文獻
[30] M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L.-M. Chen, K. S. Nelson, C. Zhou, R. B.
Kaner, and Y. Yang, “Soft transfer printing of chemically converted graphene,” Adv.
Mater., vol. 21, no. 20, pp. 2098–2102, 2009.
[31] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and
J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical
vapor deposition,” Nano Lett., vol. 9, no. 1, pp. 30–35, 2008.
[32] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S.
Novoselov, and A. K. Geim, “Chaotic dirac billiard in graphene quantum dots,”
Science, vol. 320, no. 5874, pp. 356–358, 2008.
[33] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell,
L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical
residues on the physical and electrical properties of chemical vapor deposited
graphene transferred to SiO2,” Appl. Phys. Lett., vol. 99, no. 12, p. 122108, 2011.
[34] E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional
graphene layers,” Phys. Rev. Lett., vol. 98, no. 18, p. 186806, 2007.
[35] W. Regan, N. Alem, B. Alemán, B. Geng, Ç. Girit, L. Maserati, F. Wang, M. Crommie,
and A. Zettl, “A direct transfer of layer-area graphene,” Appl. Phys. Lett.,
vol. 96, no. 11, p. 113102, 2010.
[36] V. Geringer, D. Subramaniam, A. Michel, B. Szafranek, D. Schall, A. Georgi,
T. Mashoff, D. Neumaier, M. Liebmann, and M. Morgenstern, “Electrical transport
and low-temperature scanning tunneling microscopy of microsoldered graphene,”
Appl. Phys. Lett., vol. 96, no. 8, pp. 082114–082114, 2010.
[37] J. W. Suk, W. H. Lee, J. Lee, H. Chou, R. D. Piner, Y. Hao, D. Akinwande, and R. S.
Ruoff, “Enhancement of the electrical properties of graphene grown by chemical
vapor deposition via controlling the effects of polymer residue,” Nano Lett., vol. 13,
no. 4, pp. 1462–1467, 2013.
[38] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C.
Tsang, and P. Avouris, “Chemical doping and electron-hole conduction asymmetry
in graphene devices,” Nano Lett., vol. 9, no. 1, pp. 388–392, 2008.
84
參考文獻
[39] E. J. Santos, A. Ayuela, and D. Sánchez-Portal, “Universal magnetic properties
of sp3-type defects in covalently functionalized graphene,” New J. Phys., vol. 14,
no. 4, p. 043022, 2012.
[40] Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang, “Toward intrinsic
graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment
of SiO2-supported graphene devices,” Nano Lett., vol. 11, no. 2, pp. 767–771,
2011.
[41] J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,”
Appl. Phys. Lett., vol. 91, no. 16, p. 163513, 2007.
[42] O. Leenaerts, B. Partoens, and F. M. Peeters, “Water on graphene: Hydrophobicity
and dipole moment using density functional theory,” Phys. Rev. B, vol. 79, no. 23,
p. 235440, 2009.
[43] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G.
Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene
sheets,” Nano Lett., vol. 8, no. 8, pp. 2458–2462, 2008.
[44] V. Berry, “Impermeability of graphene and its applications,” Carbon, vol. 62, pp. 1–
10, 2013.
[45] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. von Klitzing,
and J. H. Smet, “Graphene on a hydrophobic substrate: Doping reduction and hysteresis
suppression under ambient conditions,” Nano Lett., vol. 10, no. 4, pp. 1149–
1153, 2010.
[46] P. Joshi, H. Romero, A. Neal, V. Toutam, and S. Tadigadapa, “Intrinsic doping and
gate hysteresis in graphene field effect devices fabricated on SiO2 substrates,” J.
Phys.: Condens. Matter, vol. 22, no. 33, p. 334214, 2010.
[47] H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport
in graphene transistors,” ACS Nano, vol. 4, no. 12, pp. 7221–7228, 2010.
[48] Y. G. Lee, C. G. Kang, U. J. Jung, J. J. Kim, H. J. Hwang, H.-J. Chung, S. Seo,
R. Choi, and B. H. Lee, “Fast transient charging at the graphene/SiO2 interface causing
hysteretic device characteristics,” Appl. Phys. Lett., vol. 98, no. 18, p. 183508,
2011.
85
參考文獻參考文獻
[49] D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. Kim, H. Kim, Q. H.
Ta, K. P. So, S. J. Yoon, et al., “Probing graphene grain boundaries with optical
microscopy,” Nature, vol. 490, no. 7419, pp. 235–239, 2012.
[50] S. J. Sque, R. Jones, and P. R. Briddon, “The transfer doping of graphite and
graphene,” Phys. Status Solidi A, vol. 204, no. 9, pp. 3078–3084, 2007.
[51] N. Ooi, A. Rairkar, and J. B. Adams, “Density functional study of graphite bulk
and surface properties,” Carbon, vol. 44, no. 2, pp. 231–242, 2006.
[52] K. Pi, K. M. McCreary, W. Bao, W. Han, Y. F. Chiang, Y. Li, S.-W. Tsai, C. Lau, and
R. Kawakami, “Electronic doping and scattering by transition metals on graphene,”
Phys. Rev. B, vol. 80, no. 7, p. 075406, 2009.
[53] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic
structure of bilayer graphene,” Science, vol. 313, no. 5789, pp. 951–954,
2006.
[54] J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami,
“Charged-impurity scattering in graphene,” Nat. Phys., vol. 4, no. 5, pp. 377–381,
2008.
[55] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in
suspended graphene,” Nat. Nanotechnol., vol. 3, no. 8, pp. 491–495, 2008.
[56] S. D. Sarma, S. Adam, E. Hwang, and E. Rossi, “Electronic transport in twodimensional
graphene,” Rev. Mod. Phys., vol. 83, no. 2, p. 407, 2011.
[57] A. F. Young and P. Kim, “Quantum interference and klein tunnelling in graphene
heterojunctions,” Nat. Phys., vol. 5, no. 3, pp. 222–226, 2009.
[58] O. Klein, “Die reflexion von elektronen an einem potentialsprung nach der relativistischen
dynamik von dirac,” Physik. Z., vol. 53, no. 3-4, pp. 157–165, 1929.
[59] T. Ando and T. Nakanishi, “Impurity scattering in carbon nanotubes?absence of
back scattering,” J. Phys. Soc. Jpn., vol. 67, no. 5, pp. 1704–1713, 1998.
[60] S. Ryu, C. Mudry, A. Furusaki, and A. Ludwig, “Landauer conductance and twisted
boundary conditions for dirac fermions in two space dimensions,” Phys. Rev. B,
vol. 75, no. 20, p. 205344, 2007.
86
參考文獻
[61] J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. Beenakker, “Subpoissonian
shot noise in graphene,” Phys. Rev. Lett., vol. 96, no. 24, p. 246802,
2006.
[62] F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, “Phasecoherent
transport in graphene quantum billiards,” Science, vol. 317, no. 5844,
pp. 1530–1533, 2007.
[63] R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmilehto, A. F.
Morpurgo, and P. J. Hakonen, “Shot noise in ballistic graphene,” Phys. Rev. Lett.,
vol. 100, no. 19, p. 196802, 2008.
[64] E. H. Hwang and S. D. Sarma, “Screening-induced temperature-dependent transport
in two-dimensional graphene,” Phys. Rev. B, vol. 79, no. 16, p. 165404, 2009.
[65] S. D. Sarma and E. H. Hwang, “Density-dependent electrical conductivity in suspended
graphene: Approaching the dirac point in transport,” Phys. Rev. B, vol. 87,
no. 3, p. 035415, 2013.
[66] J.-H. Chen, C. Jang, M. Ishigami, S. Xiao, W. G. Cullen, E. D. Williams, and M. S.
Fuhrer, “Diffusive charge transport in graphene on SiO2,” Solid State Commun.,
vol. 149, no. 27, pp. 1080–1086, 2009.
[67] A. K. M. Newaz, Y. S. Puzyrev, B. Wang, S. T. Pantelides, and K. I. Bolotin, “Probing
charge scattering mechanisms in suspended graphene by varying its dielectric
environment,” Nat. Commun., vol. 3, p. 734, 2012.
[68] G. Kalon, Y. J. Shin, V. G. Truong, A. Kalitsov, and H. Yang, “The role of charge
traps in inducing hysteresis: Capacitance–voltage measurements on top gated bilayer
graphene,” Appl. Phys. Lett., vol. 99, no. 8, p. 083109, 2011.
[69] T. Ando, “Screening effect and impurity scattering in monolayer graphene,” J. Phys.
Soc. Jpn., vol. 75, no. 7, 2006.
[70] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory
for graphene transport,” Proc. Natl. Acad. Sci., vol. 104, no. 47, pp. 18392–18397,
2007.
87
參考文獻參考文獻
[71] J. W. Kłos and I. V. Zozoulenko, “Effect of short-and long-range scattering on
the conductivity of graphene: Boltzmann approach vs tight-binding calculations,”
Phys. Rev. B, vol. 82, no. 8, p. 081414, 2010.
[72] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and
A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning
single-electron transistor,” Nat. Phys., vol. 4, no. 2, pp. 144–148, 2007.
[73] J.-H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. Williams, “Defect scattering
in graphene,” Phys. Rev. Lett., vol. 102, no. 23, p. 236805, 2009.
[74] E. H. Hwang and S. D. Sarma, “Acoustic phonon scattering limited carrier mobility
in two-dimensional extrinsic graphene,” Phys. Rev. B, vol. 77, no. 11, p. 115449,
2008.
[75] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic
performance limits of graphene devices on SiO2,” Nat. Nanotechnol., vol. 3, no. 4,
pp. 206–209, 2008.
[76] D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at
ultrahigh carrier densities,” Phys. Rev. Lett., vol. 105, no. 25, p. 256805, 2010.
[77] L. Pietronero, S. Strässler, H. R. Zeller, and M. J. Rice, “Electrical conductivity of
a graphite layer,” Phys. Rev. B, vol. 22, no. 2, p. 904, 1980.
[78] T. Stauber, N. M. R. Peres, and F. Guinea, “Electronic transport in graphene: A
semiclassical approach including midgap states,” Phys. Rev. B, vol. 76, no. 20,
p. 205423, 2007.
[79] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, “Atomic
structure of graphene on SiO2,” Nano Lett., vol. 7, no. 6, pp. 1643–1648, 2007.
[80] A. Fasolino, J. H. Los, and M. I. Katsnelson, “Intrinsic ripples in graphene,” Nat.
Mater., vol. 6, no. 11, pp. 858–861, 2007.
[81] M. I. Katsnelson and A. K. Geim, “Electron scattering on microscopic corrugations
in graphene,” Philos. Trans. R. Soc. London, Ser. A, vol. 366, no. 1863, pp. 195–
204, 2008.
[82] R. C. Thompson-Flagg, M. J. B. Moura, and M. Marder, “Rippling of graphene,”
Europhys. Lett., vol. 85, no. 4, p. 46002, 2009.
88
參考文獻
[83] I. S. Terekhov, A. I. Milstein, V. N. Kotov, and O. P. Sushkov, “Screening of
coulomb impurities in graphene,” Phys. Rev. Lett., vol. 100, no. 7, p. 076803, 2008.
[84] F. de Juan, A. Cortijo, and M. A. H. Vozmediano, “Charge inhomogeneities due to
smooth ripples in graphene sheets,” Phys. Rev. B, vol. 76, no. 16, p. 165409, 2007.
[85] M. I. Katsnelson, “Zitterbewegung, chirality, and minimal conductivity in
graphene,” EPJ B, vol. 51, no. 2, pp. 157–160, 2006.
[86] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless
Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
[87] C.-J. Shih, G. L. C. Paulus, Q. H. Wang, Z. Jin, D. Blankschtein, and M. S. Strano,
“Understanding surfactant/graphene interactions using a graphene field effect transistor:
relating molecular structure to hysteresis and carrier mobility,” Langmuir,
vol. 28, no. 22, pp. 8579–8586, 2012.
[88] J. H. Bardarson, J. Tworzydlo, P. Brouwer, and C. Beenakker, “Demonstration of
one-parameter scaling at the dirac point in graphene,” in APS Meeting Abstracts,
vol. 1, p. 29004, 2008.
[89] H. Suzuura and T. Ando, “Crossover from symplectic to orthogonal class in a twodimensional
honeycomb lattice,” Phys. Rev. Lett., vol. 89, no. 26, pp. 266603–
266603, 2002.
[90] W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, “Hysteresis caused
by water molecules in carbon nanotube field-effect transistors,” Nano Lett., vol. 3,
no. 2, pp. 193–198, 2003.
[91] Z. Zhang, H. Xu, H. Zhong, and L.-M. Peng, “Direct extraction of carrier mobility
in graphene field-effect transistor using current-voltage and capacitance-voltage
measurements,” Appl. Phys. Lett., vol. 101, no. 21, p. 213103, 2012.
[92] Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, “Origin of spatial
charge inhomogeneity in graphene,” Nat. Phys., vol. 5, no. 10, pp. 722–726, 2009.
[93] J. Xia, F. Chen, J. Li, and N. Tao, “Measurement of the quantum capacitance of
graphene,” Nat. Nanotechnol., vol. 4, no. 8, pp. 505–509, 2009.
89
參考文獻參考文獻
[94] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–
phonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143,
no. 1, pp. 47–57, 2007.
[95] L. Malard, M. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy
in graphene,” Phys. Rep., vol. 473, no. 5, pp. 51–87, 2009.
[96] R. Saito, A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A.
Pimenta, “Probing phonon dispersion relations of graphite by double resonance
raman scattering,” Phys. Rev. Lett., vol. 88, no. 2, pp. 027401–027401, 2002.
[97] X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel,
L. Colombo, and R. S. Ruoff, “Large-area graphene single crystals grown by lowpressure
chemical vapor deposition of methane on copper,” J. Am. Chem. Soc.,
vol. 133, no. 9, pp. 2816–2819, 2011.
[98] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo,
and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent
conductive electrodes,” Nano Lett., vol. 9, no. 12, pp. 4359–4363, 2009.
[99] T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T.-S. Kim, and B. J. Cho, “Direct
measurement of adhesion energy of monolayer graphene as-grown on copper and
its application to renewable transfer process,” Nano Lett., vol. 12, no. 3, pp. 1448–
1452, 2012.
[100] Z. Xu and M. J. Buehler, “Interface structure and mechanics between graphene
and metal substrates: a first-principles study,” J. Phys.: Condens. Matter, vol. 22,
no. 48, p. 485301, 2010.
[101] L.-C. Chiang, “The research about microetching efficiency in different parameters
and methods of sulfuric acid and hydrogen peroxide,” National Taipei University
of Technology master’s thesis, 2007.
[102] H. S. Wahab, S. H. Ali, and A. M. Abdul Hussein, “Adsorption of H2O,CO2,O2,Ti
and Cu on graphene: A molecular modeling approach.,” International Journal of
Electrical & Computer Sciences, vol. 12, no. 6, 2012.
[103] Z. H. Ni, H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen,
“The effect of vacuum annealing on graphene,” J. Raman Spectrosc., vol. 41, no. 5,
pp. 479–483, 2010.
90
參考文獻
[104] S. Hertel, F. Kisslinger, J. Jobst, D. Waldmann, M. Krieger, and H. B. Weber, “Current
annealing and electrical breakdown of epitaxial graphene,” Appl. Phys. Lett.,
vol. 98, no. 21, p. 212109, 2011.
[105] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and
P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett., vol. 101, no. 2,
p. 026803, 2008.
[106] C. J. L. de la Rosa, J. Sun, N. Lindvall, M. T. Cole, Y. Nam, M. Löffler, E. Olsson,
K. B. Teo, and A. Yurgens, “Frame assisted H2O electrolysis induced H2 bubbling
transfer of large area graphene grown by chemical vapor deposition on Cu,” Appl.
Phys. Lett., vol. 102, no. 2, p. 022101, 2013.
[107] D.-Y. Wang, I. Huang, P.-H. Ho, S.-S. Li, Y.-C. Yeh, D.-W. Wang, W.-L. Chen,
Y.-Y. Lee, Y.-M. Chang, C.-C. Chen, et al., “Clean-lifting transfer of large-area
residual-free graphene films,” Adv. Mater., vol. 25, no. 32, pp. 4521–4526, 2013.
[108] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A.
Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its
bilayer,” Phys. Rev. Lett., vol. 100, no. 1, p. 016602, 2008.
[109] K. Nagashio, T. Nishimura, and A. Toriumi, “Estimation of residual carrier density
near the dirac point in graphene through quantum capacitance measurement,” Appl.
Phys. Lett., vol. 102, no. 17, p. 173507, 2013.
[110] S. Adam and S. D. Sarma, “Boltzmann transport and residual conductivity in bilayer
graphene,” Phys. Rev. B, vol. 77, no. 11, p. 115436, 2008.
[111] Q. Li, E. Hwang, and S. D. Sarma, “Disorder-induced temperature-dependent transport
in graphene: Puddles, impurities, activation, and diffusion,” Phys. Rev. B,
vol. 84, no. 11, p. 115442, 2011.
[112] J. Heo, H.-J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo,
E. H. Hwang, and S. D. Sarma, “Nonmonotonic temperature dependent transport
in graphene grown by chemical vapor deposition,” Phys. Rev. B, vol. 84, no. 3,
p. 035421, 2011.
[113] E. H. Hwang and S. D. Sarma, “Insulating behavior in metallic bilayer graphene:
Interplay between density inhomogeneity and temperature,” Phys. Rev. B, vol. 82,
no. 8, p. 081409, 2010.
91
參考文獻參考文獻
[114] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, “Temperaturedependent
transport in suspended graphene,” Phys. Rev. Lett., vol. 101, no. 9,
p. 096802, 2008.
[115] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe,
T. Taniguchi, P. Kim, K. L. Shepard, et al., “Boron nitride substrates for high-quality
graphene electronics,” Nat. Nanotechnol., vol. 5, no. 10, pp. 722–726, 2010.
[116] R. Golizadeh-Mojarad and S. Datta, “Effect of contact induced states on minimum
conductivity in graphene,” Phys. Rev. B, vol. 79, no. 8, p. 085410, 2009.
[117] Z. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and
D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat.
Phys., vol. 4, no. 7, pp. 532–535, 2008.
[118] D. Jena and A. Konar, “Enhancement of carrier mobility in semiconductor nanostructures
by dielectric engineering,” Phys. Rev. Lett., vol. 98, no. 13, p. 136805,
2007.
[119] C. Jang, S. Adam, J.-H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer,
“Tuning the effective fine structure constant in graphene: Opposing effects of dielectric
screening on short- and long-range potential scattering,” Phys. Rev. Lett.,
vol. 101, no. 14, p. 146805, 2008.