簡易檢索 / 詳目顯示

研究生: 廖家翊
Liao, Chia-Yi
論文名稱: 分子結構對於3-烷基噻吩酸催化聚合行為之影響
The Influence of Molecular Structure on Acid-Catalyzed Polymerization of 3-Alkylthiophenes
指導教授: 韓建中
Han, Chien-Chung
口試委員: 洪嘉呈
Horng, Jia-Cherng
白孟宜
Bai, Meng-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 138
中文關鍵詞: 導電高分子聚噻吩
外文關鍵詞: Conducting polymer, Polythiophene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來許多研究團隊致力於導電高分子的相關研究,導電高分子可藉由改變摻雜程度來控制其導電度,也能夠對分子結構進行修飾來賦予其不同的特性,這些性質都給予了其廣泛的應用價值,聚噻吩具有高導電性、良好的穩定性、以及高度的經濟價值,使其最受到吸引學者們的關注。

    一般工業上聚噻吩都是透過金屬催化劑進行合成,然而金屬催化劑除了價格較為昂貴外,其於高分子成品中的殘留也會造成電子元件的壽命減短,為了以更為低廉的成本來得到效能更好的產品,本實驗室便以有機酸做為催化劑來進行這類產品的製造。

    本論文第一部分討論將噻吩三號位置換為枝狀結構對聚合反應之影響,立體障礙較大的支狀結構能夠阻止高分子間交聯的發生,使聚噻吩不易形成不溶凝膠,如此一來便能提升聚噻吩的溶解性,使其具有更良好加工性。第二部分則藉由置換噻吩二號位上不同的離去基以及三號位上不同的側鏈來觀察其不同的聚合模式,並藉由在聚合反應中重複加入單體來證實酸催化聚合法確實具有活性聚合之特性。最後,藉由Triton X-100的添加,我們成功給予了酸催化聚合更好的發展性。


    In recent years, many scientific groups dedicate their research to conducting polymers because of their wide variety of applications. By adjusting its doping level and modifying its molecular structure, conducting polymer can achieve better conductivity and solubility. Among these kinds of conducting polymers, polythiophenes attract many researchers’ attention due to their excellent properties such as high conductivity, environmental stability, and economical importance.

    The most common synthetic way of polythiophenes in industry is transition metal catalyzed polycondensation. However, transition metal catalyst is relatively expensive and the residual in the final product might shorten the life cycle of the electric devices. In order to overcome the challenge caused by transition metal catalyst, our group developed a novel acid-catalyzed polymerization which utilizes organic acid as catalyst.

    This thesis includes two parts. The first part discusses the influence of side chain on polythiophene. When the side chain is a branch structure, the steric hindrance reduces the possibility of cross-linking, which increases the solubility of the final polymer product. The second part investigates the impact of different side chains and leaving groups on the acid-catalyzed polymerization. Moreover, because homopolymer with higher molecular weight was synthesized when new monomers were added into the reaction, we successfully reveal the characteristic behavior of living polymerization in our system. Finally, the existence of Triton X-100 highly promotes the future development of acid-catalyzed polymerization.

    摘要 I Abstract II 謝誌 III 本文目錄 IV 圖目錄 VI 表目錄 XI 附錄目錄 XIII 第一章 緒論 1 1-1 前言 2 1-2 導電高分子的簡介 3 1-2-1 導電高分子的原理 3 1-2-2 導電高分子的應用 5 1-3 聚噻吩傳統合成方法及其選擇性比較 7 1-3-1 聚噻吩傳統合成方法 7 1-3-2 聚噻吩位向選擇性之鑑定與其光電性質 10 1-4 以酸作為催化劑進行聚噻吩之陽離子聚合 13 1-4-1 陽離子聚合法 13 1-4-2 聚噻吩的酸催化聚合法 16 1-5 研究動機 19 第二章 實驗內容 20 2-1 常用藥品及溶劑 21 2-2 儀器設備和分析、計算之方法 23 2-3 化合物的結構、代號、英文名稱 29 2-4 噻吩單體之合成及其聚合 30 2-4-1 3-(2-ethylhexyl)-thiophene之合成 30 2-4-2 2-bromo-3-(2-ethylhexyl)thiophene之合成 33 2-4-3 2-chloro-3-(2-ethylhexyl)thiophene之合成 35 2-4-4 3-octylthiophene之合成 37 2-4-5 2-bromo-3-octylthiophene之合成 40 2-4-6 3-dodecylthiophene之合成 42 2-4-7 2-bromo-3-dodecylthiophene之合成 45 2-4-8 2-bromo-3-(2-ethylhexyl)thiophene之聚合反應 47 2-4-9 2-chloro-3-(2-ethylhexyl)thiophene之聚合反應 48 2-4-10 2-bromo-3-octylthiophene之聚合反應 49 2-4-11 2-bromo-3-dodecylthiophene之聚合反應 50 第三章 2-溴-3-(2-乙基己基)噻吩之酸催化聚合及溶解度探討 51 3-1 前言 52 3-2 2-Bromo-3-(2-ethylhexyl)thiophene聚合條件探討及其結構鑑定 55 3-3 Poly(3-(2-ethylhexyl)thiophene)之溶解度測試 70 第四章 2-氯-3-(2-乙基己基)噻吩及2-溴-3-辛基噻吩之酸催化聚合 79 4-1 不同鹵素離去基之噻吩單體之比較(鹵素=Cl,Br) 80 4-2 2-溴-3-辛基噻吩之酸催化活性聚合探討 94 4-3 結論 115 參考資料 116 附錄 118

    1. Shirakawa, H.; Ikeda, S., Polym. J., 1971, 2, 231-244.
    2. Ito, T.; Shirakawa, H.; Ikeda, S., J. Polym. Sci., Part A: Polym. Chem., 1974, 12, 11-20.
    3. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G., Phys. Rev. Lett., 1977, 39, 1098-1101.
    4. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., J. Chem. Soc., Chem. Commun., 1977, 578-580.
    5. Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Angew. Chem. Int. Ed., 1998, 37, 402-428.
    6. Murat, A.; Tolga, K.; A.Sezai, S., Curr. Phys. Chem., 2012, 2, 224-240.
    7. Burke, A., Ultracapacitors: Why, How, and Where is the Technology. 2000.
    8. Roncali, J.; Garreau, R.; Delabouglise, D.; Garnier, F.; Lemaire, M., J. Chem. Soc., Chem. Commun., 1989, 679-681.
    9. Balint, R.; Cassidy, N. J.; Cartmell, S. H., Acta Biomaterialia, 2014, 10, 2341-2353.
    10. Dai, L., Intelligent macromolecules for smart devices: from materials synthesis to device applications. Springer Science & Business Media: 2004.
    11. Sharma, P. S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W., Anal. Bioanal. Chem., 2012, 402, 3177-3204.
    12. McCullough, R. D., Adv. Mater., 1998, 10, 93-116.
    13. Osaka, I.; McCullough, R. D., Acc. Chem. Res., 2008, 41, 1202-1214.
    14. Chen, T.-A.; Wu, X.; Rieke, R. D., J. Am. Chem. Soc., 1995, 117, 233-244.
    15. Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D., Macromolecules, 2001, 34, 4324-4333.
    16. Bjørnholm, T.; Greve, D. R.; Geisler, T.; Petersen, J. C.; Jayaraman, M.; McCullough, R. D., Adv. Mater., 1996, 8, 920-923.
    17. Han, C. C.*; Arumugam, B. “Method for forming conjugated heteroaromatic homopolymer and copolymer, and products thereof”, US patent application 13/662, 533 (Oct 28, 2012), US 2014-0121326 A1 (May 1, 2014).
    18. Stevens, M. P., Polymer Chemistry-An Introduction, 3rd ed., Oxford University Press, 2000.
    19. Bonillo, B.; Swager, T. M., J. Am. Chem. Soc., 2012, 134, 18916-18919.
    20. Balasubramanian, A.; Ku, T.-C.; Shih, H.-P.; Suman, A.; Lin, H.-J.; Shih, T.-W.; Han, C.-C., Polym. Chem., 2014, 5, 5928-5941.
    21. 郭芳伶. 碩士論文. 國立清華大學, 2015.
    22. 劉岱杰. 碩士論文. 國立清華大學, 2017.

    QR CODE