簡易檢索 / 詳目顯示

研究生: 許從宜
Tsung-yi Hsu
論文名稱: 次像素定位及其在奈米定位之應用
Sub-pixel Registration and Its Application in Nano-Positioning
指導教授: 彭明輝
Ming-Hwei Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 影像定位奈米尺度精密定位次像素邊跡偵測疊對誤差量測缺陷檢測
外文關鍵詞: image registration, nano-positioning, subpixel edge detection, overlay metrology, defect detection
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 既有的精密定位系統,大多是利用雷射干涉儀量測定位機台的移動量,而非對平台上的物件進行直接量測,因此會受到機台熱漲冷縮、夾具的鬆緊等因素的干擾,使奈米級定位具有很高的難度。本研究以次像素影像定位的技術,針對物件進行直接量測的方法,大幅簡化量測的機構以及對定位平台重現度的要求,而使奈米等級的定位精度更容易被實現。
    本研究利用特徵法進行影像定位,可以分為特徵萃取、特徵比對以及參數估測等三個步驟。其中特徵萃取是影像定位精度的關鍵所在,既有的次像素邊跡偵測方法,通常沒有考慮取像系統模糊效應的影響,因此使用錯誤的步階模型進行分析,無法得到正確的估測結果。本研究考慮模糊效應的影響,並有效利用模糊步階模型的特性,對既有的次像素邊跡偵測方法進行改良,由實驗結果可以確實的看出本研究的方法能夠得到更精確的定位結果以及更佳的強健性。
    本研究提出的影像定位技術除了可以用在精密定位外,本文還提出該技術在缺陷檢測的應用。配合模糊步階的分析檢驗誤差,能解除過去對樣板檢測法會產生過大灰階值誤差假缺陷的疑慮。


    第一章 簡介 1 1.1 背景描述 1 1.2 文獻回顧 5 1.2-1 微影技術之對位控制 5 1.2-2 影像定位 9 1.2-3 次像素邊跡檢測(subpixel edge detection) 14 1.3 研究策略與論文架構 17 第二章 影像定位之參數估測 19 2.1 像素級直線邊跡偵測 19 2.2 次像素直線邊跡檢測 26 2.2-1 模糊效應與模糊步階模型 27 2.2-2 Shan次像素邊跡偵測 33 2.2-3 Shan次像素邊跡偵測之改良 41 2.3 特徵匹配與定位參數估測 45 2.3-1 直線特徵參數於剛體運動之相對關係 45 2.3-2 直線特徵匹配與定位參數估測 48 第三章 影像定位與缺陷檢測 53 3.1 樣板比對法與次像素位移影像重建 53 3.2 雙線性內插法重建影像之誤差分析 59 第四章 實驗結果與分析 65 4.1 點擴散函數之量測 65 4.2 模擬影像之直線特徵定位誤差分析 67 4.2-1 步階夾角大角度分析 69 4.2-2 步階夾角小角度分析 72 4.3 實際影像之直線特徵定位誤差分析 76 4.4 奈米等級影像引導精密定位概念說明 78 4.5 缺陷檢測應用範例 80 第五章 結論 81 5.1 本研究之貢獻 81 5.2 未來發展方向 82 參考文獻 83

    參考文獻

    [1] C. Picciotto, J. Gao, E. Hoarau, and W. Wu, “Image displacement sensing (NDSE) for achieving overlay alignment,” Applied Physics A: Materials Science and Processing, vol. 80, no. 6, pp. 1287-1299, 2005.
    [2] P. Leroux, D. Ziger, and N. Juig, “Focus characterization using end of line metrology,” IEEE Transactions on Semiconductor Manufacturing, vol. 13, no. 3, pp. 322-330, 2000.
    [3] W. Zhang and S. Y. Chou, “Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers,” Applied Physics Letters, vol. 79, no. 6, pp. 845, 2001.
    [4] X. Li, L. Han, and W. Gu, “Study of overlay metrology in atomic force microscope lithography (overlaying lithography with atomic force microscope),” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 24, no. 6, pp. 3101-3104, 2006.
    [5] 袁琪葦,“奈米壓印對位系統之研製:影像檢測技術與雷射干涉儀於多層壓印機台之應用”,台灣大學碩士論文,2004.
    [6] 趙育漢,“以類神經網路分析微影覆蓋幾何誤差”,中原大學碩士論文,2002.
    [7] Y. Liu and I. Black, “GaAs wafer overlay performance effected by annealing heat treatment - Part II,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 4689II, pp. 1122-1132, 2002.
    [8] W. W. Flack, G. E. Flores, and T. Tran, “Application of pattern recognition in mix-and-match lithography,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 2440, pp. 913-927, 1995.
    [9] B. Zitovà and J.Flusser, “Image registration methods: a survey,” Image and Vision Computing, vol. 21, pp.977-1000, 2003.
    [10] R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” Perntice Hall, 1999.
    [11] S. Kaneko, I. Murase, and S. Igarashi, “Robust image registration by increment sign correlation,” Pattern Recognition, vol. 35, no. 10, pp. 2223-2234, 2002.
    [12] R. Berthilsson, “Affine correlation,” Proceedings of the International Conference on Pattern Recognition ICPR’98, Brisbane, Australia, pp. 1458-1461, 1998.
    [13] B. S. Reddy and B.N. Chatterji, “FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Transactions on Image Processing, vol. 5, no. 8, pp. 1266-1271, 1996.
    [14] Y. Keller, A. Averbuch, and M. Israeli, “Pseudopolar-based estimation of large translations, rotations, and scalings in images,” IEEE Transactions on Image Processing, vol. 14, no. 1, pp. 12-22, 2005.
    [15] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17, no. 1-3, pp. 185-203, 1981.
    [16] L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” International Journal of Computer Vision, vol. 12, no.1, pp. 43-77, 1994.
    [17] J. Flusser and T. Suk, “Degraded image analysis: An invariant approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 6, pp. 590-603, 1998.
    [18] W. Fo¨rstner and E. Gu¨lch, “A fast operator for detection and precise location of distinct points, corners and centers of circular features,” Proceedings of the ISPRS Workshop on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281-305, 1986.
    [19] S. M. Smith and J. M. Brady, “SUSAN - a new approach to low level image processing,” International Journal of Computer Vision, Vol. 23, no. 1, pp. 45-78, 1997.
    [20] S. Banerjee, D. P. Mukherjee, and D. D. Majumdar, “Point landmarks for registration of CT and MR images,” Pattern Recognition Letters, vol. 16, no. 10, pp. 1033-1042, 1995.
    [21] J. Ton and A. K. Jain, “Registering Landsat images by point matching,” IEEE Transactions on Geoscience and Remote Sensing, vol. 27, no. 5, pp. 642-651, 1989.
    [22] 胡振煇,“高反差直線圖形之次像素定位”,清華大學碩士論文,2005.
    [23] J. Canny, “Computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, 1986.
    [24] R. Deriche, “Fast Algorithms for low-level vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 78-87, 1990.
    [25] R. Mehrotra and S. Zhan, “Computational approach to zero-crossing-based two-dimensional edge detection,” Graphical Models and Image Processing, vol. 58, no. 1, pp. 1-17, 1996.
    [26] F. Truchetet, F.Nicolier, and O. Laligant, “Subpixel edge detection for dimensional control by artificial vision,” Journal of Electronic Imaging, vol. 10, no. 1, pp. 234-239, 2001.
    [27] F. Pedersini, A. Sarti, and S. Tubaro, “Estimation and compensation of subpixel edge localization error,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 11, pp. 1278-1284, 1997.
    [28] F. Pedersini, A. Sarti, and S. Tubaro, “Improving the performance of edge localization techniques through error compensation,” Signal Processing: Image Communication, vol. 12, no. 1, pp. 33-47, 1998.
    [29] E. P. Lyvers and O. R. Mitchell, “Precision edge contrast and orientation estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 6, pp. 927-937, 1988.
    [30] S. Ghosal and R. Mehrotra, “Orthogonal moment operators for subpixel edge detection,” Pattern Recognition, vol. 26, no. 2, pp. 295-306, 1993.
    [31] Y. Shan and G. W. Boon, “Sub-pixel location of edges with non-uniform blurring: A finite closed-form approach,” Image and Vision Computing, vol. 18, no. 13, pp. 1015-1023, 2000.
    [32] J. Ye, G. K. Fu, and U. P. Poudel, “High-accuracy edge detection with Blurred Edge Model,” Image and Vision Computing, vol. 23, no. 5, pp. 453-467, 2005.
    [33] S. G. Chamberlain, D. H. Harper, “MTF simulation including transmittance effects and experiment results of charge-coupled- imagers.” IEEE Journal of Solid-State Circuits ,vol. SC-13, no. 1, pp. 71-80, 1978.
    [34] J. J. Shea, “Lunar limb knife-edge optical transfer function measurements,” Journal of electronic imaging, Vol. 8, No. 2, pp.196-208, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE