研究生: |
李家碩 Li, Chia-Shuo |
---|---|
論文名稱: |
{Fe(NO)2}9及{Fe(NO)2}10雙亞硝基鐵錯合物 的結構與催化反應性之研究 The Structure and Catalytic Reactivity of {Fe(NO)2}9 and {Fe(NO)2}10 Dinitrosyl Iron Complexes (DNICs) |
指導教授: |
廖文峯
Liaw, Wen-Feng |
口試委員: |
魯才德
Lu, Tsai-Te 陳建宏 Chen, Chien-Hong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 雙亞硝基鐵錯合物 、紅外線光譜儀 、可見光-紫外光光譜儀 、單晶X光繞射分析儀 |
外文關鍵詞: | dinitrosyl iron complex, FT-IR spectroscopy, UV-vis spectroscopy, single-crystal X-ray diffraction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以N,N′-dimethyl-N,N′-bis-(pyridin-2-ylmethyl)-1,2-diaminoethane (2N2Py) 為配位基,合成出雙亞硝基鐵錯合物(DNICs)。取莫耳數比2:1的Fe(CO)2(NO)2 及2N2Py進行反應,可形成雙核結構的[{Fe(NO)2}10]2 DNIC [(2N2Py)(Fe(NO)2)2] (1),藉由紅外線光譜儀、可見光-紫外光光譜儀及單晶X光繞射分析儀來分析其性質與結構,由紅外線光譜儀可得到其NO振動頻率在THF為1698 s , 1647 s cm-1,指出兩個{Fe(NO)2}10的配位環境相同,由於 [(2N2Py)(Fe(NO)2)2] (1) 可在{Fe(NO)2}9 及 {Fe(NO)2}10雙亞硝基鐵錯合物間進行電子轉換,以及{Fe(NO)2}9/10 配位數的靈活度 (5 vs 4),可調控 [Fe(NO)2] 與[Fe(NO)2] 的間距 (Fe--Fe : 6.226 Å),推測DNIC 1應可作為小分子活化的催化劑。此外,若取莫耳數比1:1的Fe(CO)2(NO)2 及2N2Py進行反應,並加入等當量的 [NO][BF4],可形成單核的{Fe(NO)2}9 DNIC [(2N2Py)Fe(NO)2][BF4] (2),相較於具有EPR訊號gav = 2.03之四配位四面體結構 {Fe(NO)2}9 雙亞硝基鐵錯合物,六配位的八面體結構 [(2N2Py)(Fe(NO)2)2] (2) 在二氯甲烷及室溫下,其EPR訊號偏移至giso = 2.017。
The reaction of freshly-prepared Fe(CO)2(NO)2 and N,N′-dimethyl-N,N′-bis-(pyridin-2-ylmethyl)-1,2-diaminoethane (2N2Py) in a 2:1 molar ratio yielded a diamagnetic [{Fe(NO)2}10]2 dinitrosyl iron complex (DNIC) [(2N2Py)(Fe(NO)2)2] (1) which was charactized by FT-IR、UV-vis spectroscopy and single-crystal X-ray diffraction. The two IR νNO strectching frequencies 1698 s , 1647 s cm-1 (THF) indicate the identical coordination environment around each {Fe(NO)2}10 moiety. It is presumed that DNIC 1 featuring the reversible interconversion between {Fe(NO)2}9 DNIC and {Fe(NO)2}10 DNIC, the flexibility of coordination number of {Fe(NO)2}9/10 DNICs, and the presence of flexible linker connecting two isolated [Fe(NO)2] motifs may serve as molecular catalyst to trigger small molecule activation in aqueous solution. In addition, as opposed to four-coordinate classical {Fe(NO)2}9 DNIC showing EPR signal gav = 2.03, the six-coordinate non-classical {Fe(NO)2}9 DNIC [(2N2Py)Fe(NO)2][BF4] (2) displays the distinct isotropic EPR signal giso = 2.017 in CH2Cl2 at ambient temperature.
1. Stamler, J.S. Cell 1994, 78, 93.
2. Furchgott, R.F.; Zawadzki, J.V. Nature 1980, 288, 373.
3. (a) Ignarro, L. J.; Adams, J. B.; Horwitz, P. M.; Wood, K. S. J. Bioinorg. Chem. 1986, 261, 4997. (b) Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. Proc. Natl. Acad. Sci. 1987, 84, 9265.
4. (a) Stamler J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898. (b) Ueno, T.; Suzuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, Y. Biochem. Pharmacol. 2002, 63, 485. (c) Lee, J.; Chen, L; West, A. H.; Richter-Addo, G. B. Chem. Rev. 2002, 102, 1019. (d) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091
5. Koshland, D. E. Science 1992, 258, 1861.
6. Marletta, M. A. Cell 1994, 78, 927.
7. (a) Lundberg, J. O.; Weitzberg, E.; Gladwin, M. T. Nat. Rev. 2008, 7, 156. (b) Lundberg, J. O.; Weitzberg, E.; Cole, J. A.; Benjamin, N. Nat. Rev. 2004, 2, 593.
8. (a) Davis, K. L.; Martin, E.; Turko, I. V.; Murad, F. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 203. (b) Posen, G. M.; Tsai, P.; Pou, S. Chem. Rev. 2002, 102, 1191. (c) Voet, D.;Voet, J. G. Biochemistry 3rd 2004, 671. (d) Moncada, S.; Palmer, R. M. J.; Higgs, E. A. Pharmacol. Rev. 1991, 43, 109. (e) Henry, Y.; Durcrocq, C.; Drapier, J.-C.; Servent, D.; pellat, C.; Guissani, A. Eur. Biophys. J. 1991, 20, 1.
9. Gary, L. M.; Donald, A. T.: Prentice Hall International, Inc. Inorganic Chemistry 2nd , 44.
10. Enemark, J. H.; Feltham, T. D. Coord. Chem. Rev. 1974, 13, 339.
11. (a) Pryor, W. A.; Lightsey, J. W. Science 1981, 214, 435. (b) Beckman, J. S.; Beckamn, T. W.; Chen, J.; Marshall, P. A.; Freeman, B. A. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1620.
12. (a) Butler, A. R.; Megson, I. L. Chem. Rev. 2002, 102, 1155. (b) Ueno, T.; Susuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochem. Pharmacol. 2002, 63, 485. (c) Frederik., A. C.; Wiegant, I. Y.; Malyshev, I. Y.; Kleschyov, A. L.; van Faassen, E.; Vanin, A. F. FEBS Lett. 1999, 455, 179. (d) McCleverty, J. A. Chem. Rev. 2004, 104, 403. (e) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935.
13. (a) Kharitonov, V. G.; Sundquist, A. R.; Sharma, V. S. J. Biol. Chem. 1995, 270, 2815. (b) Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 1996, 118, 3419.
14. (a) Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Mülsch, A. J. Biol. Chem. 1995, 270, 29244. (b) Brosworth, C. A.; Toledo, J.C., Jr.; Zmijewski, J. W.; Li, Q.; Lancaster, J. R., Jr. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 4671.
15. (a) Vanin, A. F.; Stukan, R. A.; Manukhina, E. B. Biochim. Biophys. Acta 1996, 1295, 5. (b) Severina, I. S.; Bussygina, O. G.; Pyatakova, N. V.; Malenkova, I. V.; Vanin, A. F. Nitric Oxide 2003, 8, 155.
16. (a) Malyshev, I. Y.; Manukhina, E. B.; Mikoyan, V. D.; Kubrina, L. N.; Vanin, A. F. FEBS Lett. 1995, 370, 159. (b) Kleschyov, I. Y.; Malugin, A. V.; Golubeva, L. Y.; Zenina, T. A.; Manukhina, E. B.; Mikoyan, V. D.; Vanin, A. F. FEBS Lett. 1996, 391, 21.
17. Watts, R. N.; Hawkins, C.; Ponka, P.; Richardson, S. R. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 7670.
18. (a) Szacilowski, K.; Chmura, A.; Stasicka, Z. Coord. Chem. Rev. 2005, 249, 2408. (b)Boese, M.; Keese, M. A.; Becker, K.; Busse, R.; Mülsch, A.; J. Biol. Chem. 1991, 272, 21767. (c)Lee, M.; Arosio, P.; Cozzi, A.; Chasteen, M. , D. J. Biochemistry. 19914, 33, 3679.
19. (a)Link, T. A. Adv. Inorg. Chem. 1999, 47, 83. (b)Hunsicker-Wang, L. M.; Heine, A.; Chen, Y.; Luna, E. P.; Todaro, T.; Zhang, Y. M.; Williams, P. , A.; McRee, D. E.; Hirst, J.; Stout, C. D.; Fee, J. A. Biochemistry. 2003,42, 7303.
20. (a) Calzolai, L.;Zhou, Z. H.; Adams, M. W. W.; La Mar G. N. J. Am. Chem. Soc. 1996, 118, 2513. (b) Kennedy, M. C.; Antholine, W. E.; Beinert, H. J. Biol. Chem. 1997, 727, 20340. (c) Meyer, J. Arch. Biochem. Biophys. 1981, 210, 246. (d) Welter, R.; Yu, L.; Yu, C. A. Arch. Biochem. Biophys. 1996, 331, 9. (e) Rogers, P. A.; Eide, L.; Klungland, A.; Ding, H. DNA Repair 2003, 2, 809. (f) Sellers, V. M.; Johnson, M. K.; Dailey, H. A. Biochemistry 1996, 35, 2699. (g) Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5146. (h) Yang, W.; Rogers, P. A.; Ding, H. J. Biol. Chem. 2002, 277, 12868. (i) Bouton, C.; Chauveau, M. J.; Lazereg, S.; Drapier, J. C. J. Biol. Chem. 2002, 277, 31220.
21. McDonald, C. C.; Phillips, W. D.; Mower, H. F. J. Am. Chem. Soc. 1965, 87, 3319.
22. Cesareo, E.; Parker, L. J.; Pedersen, J. Z.; Nuccetelli, M.; Mazzetti, A. P.; Pastore, A.; Federici, G.; Caccuri, A. M.; Ricci, G.; Adams, J. J.; Parker, M. W.; Bello, M. L. J. Biol. Chem. 2005, 280, 42172.
23. (a) Cruz-Ramos, H.; Crack, J.; Wu, G.; Hughes, M. N.; Scott, C.; Thomson, A. J.; Green, J.; Poole, R. K. EMBO J. 2002, 21, 3235. (b) Lee, M.; Arosio, P.; Cozzi, A.; Chasteen, M. D. Biochemistry 1994, 33, 3679. (c) D’Autréaux, B.; Horner, O.; Oddou, J.-L.; Jeandey, C.; Gambarelli, S.; Berthomieu, C.; Latour, J.-M.; Michaud-Soret, I. J. Am. Chem. Soc. 2004, 126, 6005. (d) Goussias, C.; Deligiannakis, Y.; Sanakis, Y.; Ioannidis, N.; Petrouleas, V. Biochemistry 2002, 41, 15212.
24. Gwost, D.; Caulton, K. D. Inorg. Chem. 1973, 12, 2095.
25. (a) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627. (b) Strasdeit, H.; Krebs, B.; Henkel, G. Z. Naturforsch. 1986, 41b, 1357. (c) Bryar, T. R.; Eaton, D. R. Can. J. Chem. 1992, 70, 1917. (d) Osterloh, F.; Saak, W.; Haase, D.; Pohl, S. Chem. Commun. 1997, 979. (e) Liaw, W.-F.; Chiang, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lai, C.-H. Inorg. Chem. 2000, 39, 480. (f) Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473. (g) Chiang, C.-Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 10867. (h) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159. (i) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872. (j) Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799. (k) Tsai, M.-L.; Hsieh, C.-H.; Liaw, W.-F. Inorg. Chem. 2007, 46, 5110. (l) Huang, H.-W.; Tsou, C.-C.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2008, 47, 2196.
26. Wang, X.; Sundberg, E. B.; Li, L.; Kantardjieff, K. A.; Herron, S. R.; Lim, M.; Ford, P. C. Chem. Commum. 2005, 477.
27. (a) Albano, V. G.; Areneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413. (b) Chau, C.-N.; Wojcicki, A.; Calligaris, M.; Nardin, G. Inorg. Chim. Acta. 1990, 168, 105. (c) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 168, 105. (d) Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041.
28. Tsai, F.-T.; Kuo T.-S.; Liaw, W.-F. J. Am. Chem. Soc. 2009, 131, 3426.
29. Shih, W.-C.; Lu, T.-T.; Yang, L,-B.; Tsai, F.-T.; Chiang, M.-H.; Lee, J.-F.;
Chiang, Y.-W.; Liaw, W.-F. Inorg. Biochem. 2012, 113, 83
30. (a) Russin, J. Ann. Chim. Phys. 1858, 52, 285. (b) Lu, T.-T.; Huang, H.-W.; Liaw, W.-F. Inorg. Chem. 2009, 48, 9027.
31. Tonzetich, Z. J.; McQuade L. E.; Lippard, S. J. Inorg. Chem. 2010, 49, 6388.
32. J. R. Petit;J. Jouzel, et al. Nature 1999, 399, 429.
33. Pachauri,R.K.;Reisinger, A. IPCC Fourth Assessment Report, Intergovernmental Panel on Climate Change, 2007.
34. Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, and Jeffrey R. Long. Chem. Rev. 2012, 112, 724-781.
35. Kedzierzawski, P.; Augustynski, J. J. Electrochem. Soc. 1994, 141, 58.
36. W. C. Chueh;C. Falter;M. Abbott;D. Scipio;P. Furler;S. M. Haile;A. Steinfeld. Science 2010, 330, 1797.
37. Kohno, Y.; Tanaka, T. ; Funabiki, T. ; Yoshida, S., Physical Chemistry Chemical Physics. 2000, 2, 2635-2639.
38. (a) J. Chauvin;F. Lafolet;S. Chardon-Noblat;A. Deronzier;M. Jakonen;M. Haukka Chem. Eur. J. 2011, 17, 4313. (b) Z.-Y. Bian;S.-M. Chi;L. Li;W. Fu Dalton Trans. 2010, 39, 7884.
39. (a) C. Lescot;D. U. Nielsen, et al. J. Am. Chem. Soc. 2014, 136, 6142. (b) D. S. Laitar;P. Muller;J. P. Sadighi J. Am. Chem. Soc. 2005, 127, 17196. (c)C. Kleeberg;M. S. Cheung, et al. J. Am. Chem. Soc. 2011, 133, 19060. (d) L. Gu;Y. Zhang J. Am. Chem. Soc. 2010, 132, 914. (e) R. Dobrovetsky;D. W. Stephan Angew. Chem. Int. Ed. 2013, 52, 2516.
40. Qi, G. G.; Wang, Y. B.; Estevez, L.; Duan, X. N.; Anako, N.; Park, A.-H. A.; Li, W.; Jones, C. W.; Giannelis, E. P. Sci. 2011, 4, 444–452.
41. T. M. McDonald et al., Nature. 2015, 519, 303–308.
42. J. Kothandaraman, A. Goeppert, M. Czaun, G.A. Olah, G.K.S. Prakash, J. Am. Chem. Soc. 2016, 138, 778–781.
43. Tsai, M.-L.; Tsou, C.-C.; Liaw, W.-F. Acc. Chem. Res. 2015, 48, 1184.
44. A. Iturrospe, B. Artetxe, S. Reinoso, L. S. Felices, P. Vitoria, L. Lezama and J. M. Gutiérrez-Zorrilla, Inorg. Chem. 2013, 52, 3084.
45. Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041-6047.
46. B. G. Gowenlock and G. B. Richter-Addo, Chem. Rev., 2004, 104, 3315-3340.
47. Kevin Balichard.; Camille Nyikeine.; Igor Bezverkhyy. Journal of Hazardous Materials. 2014, 264, 79.