簡易檢索 / 詳目顯示

研究生: 李季青
Lee, Chi-Ching
論文名稱: 全基因體分析與基因網絡資料庫平台之建構與應用
Establishment and Application of Whole Genome Analytic Platform and Gene Interaction Database
指導教授: 唐傳義
Tang, Chuan Yi
呂平江
Lyu, Ping-Chiang
口試委員: 唐傳義
Tang, Chuan Yi
呂平江
Lyu, Ping-Chiang
廖崇碩
Liao, Chung-Shou
劉志俊
Liu, Chih-Chin
鄧致剛
Tang, Petrus
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 133
中文關鍵詞: 微生物基因體基因交互作用網絡基因島果蠅
外文關鍵詞: microorganism, genome, gene interaction network, genomic island, fly
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在後基因體時代,隨著基因定序技術的進步與成本的降低。目前計有約莫四千個基因體被定序完成,更有約一萬五千個進行中之基因體定序計畫,有效處理與分析這些資料與從中擷取資訊,形成一個有趣的課題。本研究從三個方向切入,包含全基因體、未完成基因體與基因調控系統,建構相關的分析工具,並探討其應用性與未來的發展方向。首先,基因體提供了許多以往需要藉助生化與分生實驗才能得到的資訊,例如代謝資訊可以透過尋找酵素基因而做出預測。然而,全基因體的分析方法目前仍有所限制,在速度與準確度上都還有改進的空間。為此,我們發展了一個能從全基因體中抽資訊的方法(稱為Probe-set method),除了具備高度的容錯性之外,也能在短時間得到基因組的分析結果。並可根據該結果建構生物體的代謝關係分類樹。為了能夠大規模比較與驗證我們的結果,我們還開發了一個快速且簡便的分類樹比較方法,該方法亦能提供日後其他類相關的分類樹與演化關係樹比較之參考。除了全基因體的分析之外,針對未完成基因體我們也嘗試擷取其中的資料。臨床研究與致病機轉分析研究會集中在尋找一種稱為基因島(Genomic island)的外來遺傳物質片段,該片段所夾帶的基因群對於細菌的生化與制定及抗藥性表現有著很大的影響。我們發展了一個針對進行中的基因體計畫所設計的基因島預測工具,其最大的特色是能夠處理未完成的基因組,協助分析人員從未完成的基因片斷中抽取資訊。同時,我們還針對基因交互作用發展了首個以HTML5實作成的果蠅基因資訊呈現與網路分析工具及資料庫,提供簡單易用的使用介面與網路分析工具。我們期望我們所建構的平台與分析方法能夠提供基因組分析以至於小範圍基因網絡比較的分析能力。


    Nowadays, new technique reduces the cost and time of sequencing projects. There are around four thousand complete genomes and fifteen thousand ongoing sequencing projects in the world. Dealing with this huge data becomes an interesting topic. This dissertation focuses on three topics including the usage of complete genomes, incomplete genomes and comparisons of gene interactions. On the complete genome analysis, information can be retrieved directly from genome analysis instead of functional and metabolic experiments. For example, the possible metabolic pathways of an organism can be identified by homologous search from enzymatic database. However, the genomic analytic methods have limitations, such as the computational time causes and predicting accuracies. For this reason, we developed a strategy called probe-set method extracted information from whole genomes. It has high sequence-error tolerances and it also costs little computation time to analyze hundreds of bacterial genomes. Classification tree rebuilt based on the result reflects the metabolic characteristics. Furthermore, to evaluate our classification result, we developed a simple tree comparing method based on topological similarities of queried trees. This method provides tree comparing standard for further tree reconstruction methods. For incomplete genomes, except for the whole genome analysis, the specific regions within the chromosomes called genomic islands bring external functionalities into bacteria, such as antibiotic resistant capabilities and pathogenic abilities. Discovering of genomic island (GI) sequences is important in most bacterial genome projects. We built a Web server that offers GI prediction for incomplete genomic sequences. It provides pre-analytic information that assist researchers to finish their genome projects. For more specific analysis, such as systematic comparison of signaling transduction mechanisms, we developed the comprehensive gene-gene interaction network database and user-friendly graphic analytic platform, called PCmap.
    To sum up, we developed methods from global genomic point of view into gene cluster and gene interaction analysis. We believe these methods and Web servers can be useful for understanding and discovering the metabolic and functional relationships of organisms.

    中文摘要 2 Abstract 3 Contents 4 Chapter 1 Introduction 7 Chapter 2 On the perspective of genomic information 13 2.1 Background 14 2.2 Results 17 2.2.1 Probe-set method: definition and evaluation 17 2.2.2 Global proteomic tree 22 2.2.3 Metabolic classifier for closely related species 24 2.2.4 Phylogenetic classifier for metabolic related species 25 2.2.5 Influences of horizontal gene transfer on classification quality of the proposed method 25 2.2.6 Simulated testing of organisms with incomplete genomes 27 2.2.7 An example of incomplete genome: Leptospirillum ferrodiazotrophum 28 2.3 Discussion 29 2.3.1 Advantages of the probe-set method 29 2.3.2 Possible applications 31 2.3.3 Future work 33 2.4 Material and Methods 34 2.4.1 Data preparation 34 2.4.2 Random truncation of proteomes 35 2.4.3 Computation of probe-set frequencies and the similarities of probe-set frequency patterns 36 2.4.4 Visualization of probe-sets 36 2.4.5 Construction of classification trees 37 2.4.6 Comparison of classification trees 38 2.5 Acknowledgement 38 2.6 Figures and Tables 40 Figure 2-1. Frequency patterns of six enzyme categories and five metabolic pathways 41 Figure 2-2. Probe frequency patterns and clustering result of 29 free/host-living microorganisms 42 Figure 2-3. Proteomic tree of 23 class Pseudomonadales species 43 Figure 2-4. Large-scale proteomic tree 44 Figure 2-5. Proteomic tree of ten genus Lactobacillus species 45 Figure 2-6. Proteomic tree of species with similar metabolic capacities 46 Figure 2-7. Measurement of the similarity between classification trees 47 Figure 2-8. Performance of the probe-set method in classifying incomplete genomes 48 Figure 2-9. Proteomic tree of 33 bacteria with nitrogen fixation capabilities 49 Chapter 3 On the perspective of gene clusters and the local region of chromosomes 50 3.1 Background 51 3.2 Results 54 3.2.1 GI-POP: The annotation platform with GI detecting modules 54 3.2.2 GI-GPS, the combinational GI-predicting method 55 3.2.3 Composition of Genome Profile 56 3.2.4 Basic assessment of the SVM classifier 57 3.2.5 The performance of GI detection on two synthetic draft genomes 59 3.2.6 User interface 59 3.3 Discussion 60 3.3.1 The combinational indices 61 3.3.2 The evolutionary insight 62 3.3.3 The boundary problem 62 3.3.4 Compositional and homologous approaches working together 63 3.3.5 The completed or in-complete genome: the perspective on genomic island detecting 64 3.4 Material and Methods 65 3.4.1 Data preparation 65 3.4.2 Databases and software packages used for annotation pipeline 65 3.4.3 Components of genome profiles 66 3.4.4 SVM training and testing 67 3.4.5 Evaluation of the predictive performance of the SVM classifier 68 3.4.6 Generate tRNA and direct repeating sequences 68 3.4.7 Sliding window mechanism 69 3.5 Acknowledgement 70 3.6 Figures and Tables 71 Figure 3-1. The flowchart of GI-POP 72 Figure 3-2. The flowchart of the GI-GPS; a combinational GI-predicting method 73 Figure 3-3. The profile variations of GI and host genomes and the flowchart used to build the SVM classifier 74 Figure 3-4. All the possible boundaries of given GIs 75 Figure 3-5. The PE score of the SVM classifier 76 Figure 3-6. The Web interface of GI-POP 77 Table 1. The performance evaluation of synthetic draft genomes 78 Chapter 4 On the perspective of systematic comparison of gene interaction networks 79 4.1 Background 80 4.2 Features and Interfaces 81 4.3 Discussion and Future work 84 4.4 Acknowledgement 84 4.5 Figures and Tables 85 Figure 4-1. The gene discovery procedure 86 Figure 4-2. The Web interface of PCmap 87 Figure 4-3. The Integrated Dashboard 88 Table 1. The comparison of usabilities of the widely-used gene interaction databases and tools 89 Chapter 5 Conclusions 90 5.1 Summary and perspectives 91 5.2 Acknowledgement 93 References 95 Appendices 104 Appendix 1.1 Large-scale proteomic tree 105 Appendix 1.2 The HGT+/– proteomic trees 106 Appendix 2.1 The ROC curve of 5-fold cross validations. 107 Appendix 2.2 The 43 selected published GIs from PAIDB. 108 Appendix 3.1 An example of the depth-first search (DFS) algorithm used in Path Tracker 110 Appendix 3.2 Handbook of PCmap 112

    Marmur J, Doty P: Thermal renaturation of deoxyribonucleic acids. J Mol Biol 1961, 3:585-594.
    2. Johnson MA, Whalley JM, Littlejohns IR, Dickson J, Smith VW, Wilks CR, Reisner AH: Macropodid herpesviruses 1 and 2: two herpesviruses from Australian marsupials differentiated by restriction endonucleases, DNA composition and hybridization. Brief report. Arch Virol 1985, 85(3-4):313-319.
    3. Ewing WH: Sources of Escherichia coli cultures that belonged to O antigen groups associated with infantile diarrheal disease. J Infect Dis 1962, 110:114-120.
    4. Edwards R, Finch RG: Characterisation and antibiotic susceptibilities of Streptobacillus moniliformis. J Med Microbiol 1986, 21(1):39-42.
    5. Murry PR: Medical Microbiology, third edn; 1997.
    6. Stackebrandt E, Ludwig W, Weizenegger M, Dorn S, McGill TJ, Fox GE, Woese CR, Schubert W, Schleifer KH: Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-spore-forming relatives. J Gen Microbiol 1987, 133(9):2523-2529.
    7. Woese CR: Bacterial evolution. Microbiol Rev 1987, 51(2):221-271.
    8. Olsen GJ, Woese CR: Ribosomal RNA: a key to phylogeny. Faseb J 1993, 7(1):113-123.
    9. Ludwin D, Alexopoulou I, Esdaile JM, Tugwell P: Renal biopsy specimens from patients with rheumatoid arthritis and apparently normal renal function after therapy with cyclosporine. Canadian Multicentre Rheumatology Group. Am J Kidney Dis 1994, 23(2):260-265.
    10. Olsen GJ, Woese CR, Overbeek R: The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 1994, 176(1):1-6.
    11. Ludwin B: A look at umbilical cord blood. Nurs Spectr (Gt Chic Ne Ill Nw Indiana Ed) 1998, 11(1):24.
    12. Fox GE, Wisotzkey JD, Jurtshuk P, Jr.: How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 1992, 42(1):166-170.
    13. Doolittle RF: The origins and evolution of eukaryotic proteins. Philos Trans R Soc Lond B Biol Sci 1995, 349(1329):235-240.
    14. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD et al: Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996, 273(5278):1058-1073.
    15. Ibba M, Bono JL, Rosa PA, Soll D: Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc Natl Acad Sci U S A 1997, 94(26):14383-14388.
    16. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA et al: The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 1997, 388(6642):539-547.
    17. Ibba M, Losey HC, Kawarabayasi Y, Kikuchi H, Bunjun S, Soll D: Substrate recognition by class I lysyl-tRNA synthetases: a molecular basis for gene displacement. Proc Natl Acad Sci U S A 1999, 96(2):418-423.
    18. Jain R, Rivera MC, Lake JA: Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 1999, 96(7):3801-3806.
    19. Lake JA, Jain R, Rivera MC: Mix and match in the tree of life. Science 1999, 283(5410):2027-2028.
    20. Teichmann SA, Mitchison G: Is there a phylogenetic signal in prokaryote proteins? J Mol Evol 1999, 49(1):98-107.
    21. Nomura T, Yasuda K, Yamada T, Okamoto S, Mahato RI, Watanabe Y, Takakura Y, Hashida M: Gene expression and antitumor effects following direct interferon (IFN)-gamma gene transfer with naked plasmid DNA and DC-chol liposome complexes in mice. Gene Ther 1999, 6(1):121-129.
    22. Yap WH, Zhang Z, Wang Y: Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 1999, 181(17):5201-5209.
    23. Lin J, Gerstein M: Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res 2000, 10(6):808-818.
    24. Cardenas E, Tiedje JM: New tools for discovering and characterizing microbial diversity. Current Opinion in Biotechnology 2008, 19(6):544-549.
    25. Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK et al: Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Applied and Environmental Microbiology 2006, 72(9):6288-6298.
    26. Hugenholtz P, Tyson GW, Blackall LL: Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. Methods Mol Biol 2002, 179:29-42.
    27. Pace NR, Stahl DA, Lane DJ, Olsen GJ: The Analysis of Natural Microbial-Populations by Ribosomal-Rna Sequences. Advances in Microbial Ecology 1986, 9:1-55.
    28. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ: Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences of the United States of America 2006, 103(32):12115-12120.
    29. Symonds J: Bergey Manual of Systematic Bacteriology, Krieg,Nr, Holt,Jg. Lancet 1984, 2(8411):1075-1076.
    30. Woese CR: Bacterial Evolution. Microbiological Reviews 1987, 51(2):221-271.
    31. Woese CR, Fox GE: Phylogenetic Structure of Prokaryotic Domain - Primary Kingdoms. Proceedings of the National Academy of Sciences of the United States of America 1977, 74(11):5088-5090.
    32. Woese CR, Kandler O, Wheelis ML: Towards a Natural System of Organisms - Proposal for the Domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America 1990, 87(12):4576-4579.
    33. Qi J, Wang B, Hao BI: Whole proteome prokaryote phylogeny without sequence alignment: A K-string composition approach. Journal of Molecular Evolution 2004, 58(1):1-11.
    34. Mazurie A, Bonchev D, Schwikowski B, Buck GA: Phylogenetic distances are encoded in networks of interacting pathways. Bioinformatics 2008, 24(22):2579-2585.
    35. Chang CW, Lyu PC, Arita M: Reconstructing phylogeny from metabolic substrate-product relationships. Bmc Bioinformatics 2011, 12.
    36. Borenstein E, Kupiec M, Feldman MW, Ruppin E: Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(38):14482-14487.
    37. Clemente JC, Satou K, Valiente G: Reconstruction of phylogenetic relationships from metabolic pathways based on the enzyme hierarchy and the gene ontology. Genome Inform 2005, 16(2):45-55.
    38. Clemente JC, Satou K, Valiente G: Phylogenetic reconstruction from non-genomic data. Bioinformatics 2007, 23(2):E110-E115.
    39. Forst CV, Schulten K: Phylogenetic analysis of metabolic pathways. J Mol Evol 2001, 52(6):471-489.
    40. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H: Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp APS. Nature 2000, 407(6800):81-86.
    41. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao QX et al: Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 1998, 282(5389):754-759.
    42. Durot M, Bourguignon PY, Schachter V: Genome-scale models of bacterial metabolism: reconstruction and applications. Fems Microbiology Reviews 2009, 33(1):164-190.
    43. Cash P: Proteomics in the study of the molecular taxonomy and epidemiology of bacterial pathogens. Electrophoresis 2009, 30 Suppl 1:S133-141.
    44. Jabbour RE, Deshpande SV, Stanford MF, Wick CH, Zulich AW, Snyder AP: A protein processing filter method for bacterial identification by mass spectrometry-based proteomics. J Proteome Res 2011, 10(2):907-912.
    45. Trost B, Haakensen M, Pittet V, Ziola B, Kusalik A: Analysis and comparison of the pan-genomic properties of sixteen well-characterized bacterial genera. BMC Microbiol 2010, 10:258.
    46. Turse JE, Marshall MJ, Fredrickson JK, Lipton MS, Callister SJ: An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences. Plos One 2010, 5(11):e13968.
    47. Ciccarelli FD: Toward automatic reconstruction of a highly resolved tree of life (vol 311, pg 1283, 2006). Science 2006, 312(5774):697-697.
    48. Marchler-Bauer A, Lu SN, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR et al: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research 2011, 39:D225-D229.
    49. Bernal A, Ear U, Kyrpides N: Genomes OnLine Database (GOLD): a monitor of genome projects world-wide. Nucleic Acids Res 2001, 29(1):126-127.
    50. Pruitt KD, Tatusova T, Maglott DR: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2007, 35(Database issue):D61-65.
    51. Boore JL, Brown WM: Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics & Development 1998, 8(6):668-674.
    52. Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ: Universal trees based on large combined protein sequence data sets. Nature Genetics 2001, 28(3):281-285.
    53. Li W, Fang W, Ling L, Wang J, Xuan Z, Chen R: Phylogeny based on whole genome as inferred from complete information set analysis. Journal of Biological Physics 2002, 28(3):439-447.
    54. Lin J, Gerstein M: Whole-genome trees based on the occurrence of folds and orthologs: Implications for comparing genomes on different levels. Genome Research 2000, 10(6):808-818.
    55. Snel B, Bork P, Huynen MA: Genome phylogeny based on gene content. Nature Genetics 1999, 21(1):108-110.
    56. McHardy AC, Rigoutsos I: What's in the mix: phylogenetic classification of metagenome sequence samples. Curr Opin Microbiol 2007, 10(5):499-503.
    57. Hansen AK, Moran NA: Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proceedings of the National Academy of Sciences of the United States of America 2011, 108(7):2849-2854.
    58. Wilson ACC, Ashton PD, Calevro F, Charles H, Colella S, Febvay G, Jander G, Kushlan PF, Macdonald SJ, Schwartz JF et al: Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol Biol 2010, 19:249-258.
    59. Zientz E, Dandekar T, Gross R: Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol R 2004, 68(4):745-+.
    60. Kisand V, Wikner J: Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences. J Microbiol Meth 2003, 54(2):183-191.
    61. Vandamme P, Pot B, Gillis M, DeVos P, Kersters K, Swings J: Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological Reviews 1996, 60(2):407-+.
    62. Bernal A, Ear U, Kyrpides N: Genomes OnLine Database (GOLD): a monitor of genome projects world-wide. Nucleic Acids Research 2001, 29(1):126-127.
    63. Kyrpides NC: Genomes OnLine Database (GOLD 1.0): a monitor of complete and ongoing genome projects world-wide. Bioinformatics 1999, 15(9):773-774.
    64. Stiles ME, Holzapfel WH: Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 1997, 36(1):1-29.
    65. Boussau B, Gueguen L, Gouy M: Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria. Bmc Evolutionary Biology 2008, 8:-.
    66. Dutta C, Pan A: Horizontal gene transfer and bacterial diversity. J Biosciences 2002, 27(1):27-33.
    67. Kanhere A, Vingron M: Horizontal Gene Transfers in prokaryotes show differential preferences for metabolic and translational genes. Bmc Evolutionary Biology 2009, 9:-.
    68. Garcia-Vallve S, Guzman E, Montero MA, Romeu A: HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Research 2003, 31(1):187-189.
    69. Coram NJ, Rawlings DE: Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptosphillum ferriphilum sp nov dominates South African commercial biooxidation tanks that operate at 40 degrees C. Applied and Environmental Microbiology 2002, 68(2):838-845.
    70. Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF: Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp nov from an acidophilic microbial community. Applied and Environmental Microbiology 2005, 71(10):6319-6324.
    71. Sekiguchi Y, Muramatsu M, Imachi H, Narihiro T, Ohashi A, Harada H, Hanada S, Kamagata Y: Thermodesulfovibrio aggregans sp nov and Thermodesulfovibrio thiophilus sp nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio. Int J Syst Evol Micr 2008, 58:2541-2548.
    72. Vandamme P: Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological Reviews 1996, 60(2):407-+.
    73. Dopson M, Baker-Austin C, Bond PL: First use of two-dimensional polyacrylamide gel electrophoresis to determine phylogenetic relationships. J Microbiol Meth 2004, 58(3):297-302.
    74. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL: Alignment of whole genomes. Nucleic Acids Research 1999, 27(11):2369-2376.
    75. Lu CL, Huang YL, Huang CC, Tang CY: SoRT(2): a tool for sorting genomes and reconstructing phylogenetic trees by reversals, generalized transpositions and translocations. Nucleic Acids Research 2010, 38:W221-W227.
    76. Colwell RR: Polyphasic Taxonomy of Genus Vibrio - Numerical Taxonomy of Vibrio-Cholerae, Vibrio-Parahaemolyticus, and Related Vibrio Species. Journal of Bacteriology 1970, 104(1):410-&.
    77. Repoila F, Darfeuille F: Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects. Biol Cell 2009, 101(2):117-131.
    78. Aho AV, Hopcroft JE, Ullman JD: On finding lowest common ancestors in trees. In: Proceedings of the fifth annual ACM symposium on Theory of computing. Austin, Texas, United States: ACM; 1973: 253-265.
    79. Hacker J, Bender L, Ott M, Wingender J, Lund B, Marre R, Goebel W: Deletions of Chromosomal Regions Coding for Fimbriae and Hemolysins Occur Invitro and Invivo in Various Extraintestinal Escherichia-Coli Isolates. Microb Pathogenesis 1990, 8(3):213-225.
    80. Binnewies TT, Motro Y, Hallin PF, Lund O, Dunn D, La T, Hampson DJ, Bellgard M, Wassenaar TM, Ussery DW: Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct Integr Genomics 2006, 6(3):165-185.
    81. Frost LS, Leplae R, Summers AO, Toussaint A: Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 2005, 3(9):722-732.
    82. Hacker J, Kaper JB: Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 2000, 54:641-679.
    83. Koonin EV, Makarova KS, Aravind L: Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 2001, 55:709-742.
    84. Mantri Y, Williams KP: Islander: a database of integrative islands in prokaryotic genomes, the associated integrases and their DNA site specificities. Nucleic Acids Res 2004, 32:D55-D58.
    85. Ou HY, Chen LL, Lonnen J, Chaudhuri RR, Thani AB, Smith R, Garton NJ, Hinton J, Pallen M, Barer MR et al: A novel strategy for the identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites in closely related bacteria. Nucleic Acids Res 2006, 34(1).
    86. Hsiao W, Wan I, Jones SJ, Brinkman FS: IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 2003, 19(3):418-420.
    87. Lobry JR: Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 1996, 13(5):660-665.
    88. Yoon SH, Park YK, Lee S, Choi D, Oh TK, Hur CG, Kim JF: Towards pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids Res 2007, 35(Database issue):D395-400.
    89. Schmidt H, Hensel M: Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 2004, 17(1):14-+.
    90. Lobry JR: Asymmetric substitution patterns in the two DNA strands of bacteria. Molecular Biology and Evolution 1996, 13(5):660-665.
    91. Merkl R: SIGI: score-based identification of genomic islands. Bmc Bioinformatics 2004, 5.
    92. Nag S, Chatterjee R, Chaudhuri K, Chaudhuri P: Unsupervised statistical identification of genomic islands using oligonucleotide distributions with application to Vibrio genomes. Sadhana-Acad P Eng S 2006, 31:105-115.
    93. Rajan I, Aravamuthan S, Mande SS: Identification of compositionally distinct regions in genomes using the centroid method. Bioinformatics 2007, 23(20):2672-2677.
    94. Tu Q, Ding DF: Detecting pathogenicity islands and anomalous gene clusters by iterative discriminant analysis. Fems Microbiol Lett 2003, 221(2):269-275.
    95. van Passel MWJ, Bart A, Thygesen HH, Luyf ACM, van Kampen AHC, van der Ende A: An acquisition account of genomic islands based on genome signature comparisons. Bmc Genomics 2005, 6.
    96. Ragan MA: Detection of lateral gene transfer among microbial genomes. Curr Opin Genet Dev 2001, 11(6):620-626.
    97. Salzberg SL, Delcher AL, Kasif S, White O: Microbial gene identification using interpolated Markov models. Nucleic Acids Res 1998, 26(2):544-548.
    98. Mulder NJ, Kersey P, Pruess M, Apweiler R: In silico characterization of proteins: UniProt, InterPro and Integr8. Mol Biotechnol 2008, 38(2):165-177.
    99. Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000, 28(1):33-36.
    100. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV: The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 2001, 29(1):22-28.
    101. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35(9):3100-3108.
    102. MJ D: Using the Generic Genome Browser (GBrowse). Curr Protoc Bioinformatics 2007, Chapter 9:Unit 9.9.
    103. Langille MGI, Hsiao WWL, Brinkman FSL: Evaluation of genomic island predictors using a comparative genomics approach. Bmc Bioinformatics 2008, 9.
    104. Lin C-CCaC-J: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2011, 2:27:1--27:27.
    105. Hou YM: Transfer RNAs and pathogenicity islands. Trends Biochem Sci 1999, 24(8):295-298.
    106. Leplae R, Lima-Mendez G, Toussaint A: ACLAME: A CLAssification of Mobile genetic Elements, update 2010. Nucleic Acids Res 2010, 38:D57-D61.
    107. Stewart AC, Osborne B, Read TD: DIYA: a bacterial annotation pipeline for any genomics lab. Bioinformatics 2009, 25(7):962-963.
    108. Lowe TM, Eddy SR: tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955-964.
    109. Brodmann PD, Nicholas G, Schaltenbrand P, Ilg EC: Identifying unknown game species: experience with nucleotide sequencing of the mitochondrial cytochrome b gene and a subsequent basic local alignment search tool search. Eur Food Res Technol 2001, 212(4):491-496.
    110. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: An information aesthetic for comparative genomics. Genome Res 2009, 19(9):1639-1645.
    111. Sharp PM, Li WH: The Codon Adaptation Index - a Measure of Directional Synonymous Codon Usage Bias, and Its Potential Applications. Nucleic Acids Res 1987, 15(3):1281-1295.
    112. Rice P, Longden I, Bleasby A: EMBOSS: The European molecular biology open software suite. Trends Genet 2000, 16(6):276-277.
    113. Lee HP, Sheu TF, Tsai YT, Shih CH, Tang CY: An efficient algorithm for unique signature discovery on whole-genome EST Databases. 2004 Ieee Computational Systems Bioinformatics Conference, Proceedings 2004:650-651.
    114. McQuilton P, St Pierre SE, Thurmond J: FlyBase 101--the basics of navigating FlyBase. Nucleic acids research 2012, 40(Database issue):D706-714.
    115. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P et al: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research 2011, 39:D561-D568.
    116. Wixon J, Kell D: The Kyoto encyclopedia of genes and genomes--KEGG. Yeast 2000, 17(1):48-55.
    117. Murali T, Pacifico S, Yu JK, Guest S, Roberts GG, Finley RL: DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Research 2011, 39:D736-D743.
    118. Patil A, Nakai K, Nakamura H: HitPredict: a database of quality assessed protein-protein interactions in nine species. Nucleic Acids Research 2011, 39:D744-D749.
    119. Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, Morris Q, Bader GD: GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 2010, 26(22):2927-2928.
    120. Chaurasia G, Iqbal Y, Hanig C, Herzel H, Wanker EE, Futschik ME: UniHI: an entry gate to the human protein interactome. Nucleic Acids Research 2007, 35:D590-D594.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE