簡易檢索 / 詳目顯示

研究生: 余昆翰
Yu, Kun-Han
論文名稱: 熱燈絲化學氣相沉積奈米鑽石薄膜於石英基板之研究
Growth of nanocrystalline diamond films on quartz by hot-filament chemical vapor deposition
指導教授: 蔡宏營
Tsai, Hung-Yin
葉孟考
Yeh, Meng-Kao
口試委員: 林宏彝
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 101
中文關鍵詞: 熱燈絲化學氣相沉積奈米鑽石田口法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以熱燈絲化學氣相沉積系統,以甲烷與氫氣混合氣體做為反應物,利用田口法L9(34)直交表規劃設計實驗,探討碳源濃度、腔體壓力、基板溫度及總氣體流率等因子對於沉積奈米鑽石薄膜於石英基板之影響。並以薄膜成長速率、表面粗糙度及可見光穿透率為品質特性,利用訊噪比(S/N ratio)與平均值找出品質特性之最佳參數組合,配合變異數分析(analysis of variance)與F檢定去除影響力較低之因子後,求出最佳值預測。過程中以掃描式電子顯微鏡及原子力顯微鏡檢測試片表面形貌與粗糙度、拉曼光譜儀檢測鑽石特性峰及光譜儀檢測可見光穿透率。本研究並以電泳沉積法及Polyethylenimine附著法等方式,討論此兩種非破壞性輔助鑽石成核方法對成核密度影響。最後在最佳化參數為12 %之碳源濃度、10 Torr之腔體壓力、600 ℃之基板溫度及總氣體流率為100 sccm的製程參數條件下,於可見光穿透率可達60 %左右,且在95 %信心水準下預測值與實驗值之信心區間有重疊的部分。


    In this research, a nanocrystalline diamond thin film was realized on a quartz substrate using hot filament chemical vapor deposition (HFCVD) and a mixture of methane and hydrogen as processing gas. Taguchi’s method with L9(34) orthogonal array was used to design the experimental parameters. Moreover, the effects of the CH4/H2 ratio, chamber pressure, substrate temperature, and total gas flow rate on the qualities of the nanocrystalline diamond film were discussed. Film growth rate, surface roughness and transmittance in the visible waveband were considered as quality characteristics. Using signal-to-noise ratio and the average value of the quality characteristics, optimal parameters can be found. Together with analysis of variance and F test, an optimal quality characteristic can be predicted, after eliminating factors with less influence. Scanning electron microscope and atomic force microscope were used to inspect the surface roughness and morphology of the diamond films. Raman spectrum was used to inspect the G-band and D-band, and a spectrometer was used to inspect the transmittance of the diamond film on the quartz substrate. Moreover, electrophoresis and Polyetherimide (PEI) adhesion methods as pretreatment on the quartz substrate were compared and discussed for their effects on nucleation density. Lastly, the optimal parameters obtained in this study was 12 % CH4/H2, camber pressure of 10 Torr, 600 ℃ substrate temperature, and total gas flow rate of 100 sccm. With these parameters, the transmittance in the visible waveband of a diamond film on quartz substrate can be increased up to 60 %. The overlapping confidential intervals of theoretical values and experimental results are over 95 %.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖表目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究主題 3 第二章 文獻回顧與理論基礎 4 2.1 鑽石薄膜的分類與特性 4 2.2 化學氣相沉積鑽石薄膜法 5 2.2.1 化學氣相沉積鑽石原理 5 2.2.2 各式化學氣相沉積技術簡介 6 2.2.3 輔助鑽石成核方法 8 2.3 奈米鑽石薄膜 10 2.3.1 提高CH4/H2比例成長奈米鑽石薄膜 10 2.3.2 以偏壓輔助成長奈米鑽石薄膜 11 2.3.3 以CH4/Ar/H2 成長奈米鑽石薄膜 12 2.4 實驗數據分析 12 2.5 田口法 13 2.5.1 訊噪比 ( S/N ratio) 15 2.5.2 變異數分析( ANOVA) 16 2.5.3 F檢定 17 2.5.4 最佳值預測 18 第三章 實驗設備與程序 19 3.1 實驗流程 19 3.2 熱燈絲化學氣相沉積系統 19 3.2.1 反應腔體 19 3.2.2 燈絲加熱裝置 19 3.2.3 氣體輸送裝置 20 3.2.4 真空及壓力控制系統 20 3.2.5 冷卻系統 20 3.2.6 其他偵測裝置 21 3.3 製程氣體及實驗材料 21 3.4 基板前處理 21 3.4.1 電泳沉積法 22 3.4.2 Polyethylenimine(PEI)附著法 22 3.5 鎢絲前處理 23 3.6 實驗步驟 23 3.7 檢測儀器 24 3.7.1 掃描電子顯微鏡 24 3.7.2 拉曼光譜儀 25 3.7.3 原子力顯微鏡 25 3.7.4 可見光分光光譜儀 26 3.7.5 膠帶附著力測試 26 第四章 結果與討論 27 4.1 輔助鑽石成核方法比較 27 4.2 奈米鑽石薄膜製程 28 4.3 拉曼光譜檢測分析 29 4.4 成長速率之田口法分析 30 4.4.1 S/N ratio 30 4.4.2 因子反應分析 31 4.4.3 變異數分析(ANOVA) 32 4.5 表面粗糙度之田口法分析 33 4.5.1 S/N ratio 33 4.5.2 因子反應分析 33 4.5.3 變異數分析(ANOVA) 35 4.6 可見光穿透率之田口法分析 35 4.6.1 S/N ratio 35 4.6.2 因子反應分析 36 4.6.3 變異數分析(ANOVA) 37 4.7 奈米鑽石薄膜附著性 38 4.8 最佳化製程 39 第五章 結論與未來展望 41

    1.K. E. Spear and J. P. Dismukes, “Synthetic diamond: emerging CVD science and technology,” Wiley, 1994.
    2.P. K. Bachmann and R. Messier, “Advances in material sciences are paving the way for use of synthetic diamond,” Chemical & Engineering News, 1989.
    3.W. G. Eversole, “Synthesis of diamond,” US Patent, 1958.
    4.J. C. Angus, “Growth of Diamond Seed Crystals by Vapor Deposition,” Journal of Applied Physics, Vol. 39, pp. 2915-2922, 1968.
    5.S. Matsumoto, Y. Sato, M. Tsutsimi, and N. Setaka, “Growth of diamond particles from methane-hydrogen gas,” Journal of Materials Science, Vol. 17, pp. 3106-3112, 1982.
    6.L. R. Radovic, “Catalysis of Carbon Gasification,” Chemistry and physics of carbon, Vol. 29, pp. 274-286, 2004.
    7.A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H.G. Busmann, E. M. Meyer, M. Q. Ding, “Ultrananocrystalline diamond thin film for MEMS and moving mechanical assembly device,” Diamond and Related Materials, Vol. 10, pp. 1952-1961, 2001.
    8.P. E. Davis, “Diamond Films And Coatings,” NOYES Publications, 1993.
    9.R. Kern, “Current Topics in Material Science,” Chemical Physics Letters, Vol. 3, pp. 211-216, 1979.
    10.H. Liu, and D. S. Dandy, “Diamond Chemical Vapor Deposition:Nucleation and Early Growth Stages,” NOYES Publications, 1995.
    11.A. D. Paul and A. S. David, “Influence of substrate topography on the nucleation of diamond thin films,” Journal of Applied Physics, Vol. 59, pp. 1562-1564, 1991.
    12.I. Sumio, A. Yumi, and B. Kazuhiro, “Early formation of chemical vapor deposition diamond films,” Journal of Applied Physics, Vol. 57, pp. 2646-2648, 1990.
    13.T. Tsubota, S. Ida, N. Okada and M. Nagata, “CVD diamond coating on WC-Co cutting tool using ECR MPCVD apparatus via electrophoretic seeding pretreatment,” Surface and Coatings Technology, Vol. 169, pp. 262-265, 2003.
    14.J. J. Adair and R. K. Singh, “Enhanced chemical vapor deposition of diamond and related materials,” US Patent, 1996.
    15.D. Gilbert, M. Carasso and P. Demkowicz, “Deposition of diamond from alcohol precursors in an electron cyclotron resonance plasma system,” Journal of Electronic Materials, Vol. 26, pp. 1326-1330, 1997.
    16.A. Hoffman, I. Gouzman, S. H. Christiansen, H. P. Strunk, G. Comtet, L. Hellner, and G. Dujardin, “Evolution and properties of nanodiamond films deposited by direct current glow discharge,” Journal of Applied Physics, Vol. 89, No. 5, pp. 2622-2630, 2001.
    17.S. A. Catledge and Y. K. Vohra, “High density plasma processing of nanostructured diamond films on metals,” Journal of Applied Physics, Vol. 84, No. 11, pp. 753-759, 2001.
    18.L. C. Chen, P. D. Kichambare, K. H. Chen, J. J. Wu, J. R. Yang and S. T. Lin, “Growth of highly transparent nanocrystalline diamond films and a spectroscopic study of the growth,” Journal of Applied Physics, Vol. 89, No. 1, pp. 6469-6471, 1998.
    19.M. Wiora, K. Brühne, A. Flöter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. V. Buuren, A.V. Hamza, J. Biener and H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD,” Diamond and Related Materials, Vol. 18, pp. 927-930, 2009.
    20.T. Hao, H. Zhang, C. Shi and G. Han, “Nano-crystalline diamond films synthesized at low temperature and low pressure by hot filament chemical vapor deposition,” Surface and Coatings Technology, Vol. 201, pp. 801-806, 2006.
    21.X. Jiang and C. L. Jia, “Structure and defects of vapor-phase-grown diamond nanocrystals,” Journal of Applied Physics, Vol. 80, No. 13, pp. 2801-2271, 2002.
    22.X. T. Zhou, Q. Li, F. Y. Meng, I. Bello, C. S. Lee, S. T. Lee, and Y. Lifshitz, “Manipulation of the equilibrium between diamond growth and renucleationto form a nanodiamond/amorphous carbon composite,” Journal of Applied Physics, Vol. 80, No. 18, pp. 3307-3309, 2002.
    23.T. Sharda, M. M. Rahaman, Y. Nukaya, T. Soga, T. Jimbo and M. Umeno, “Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition,” Diamond and Related Materials, Vol. 10 pp. 4912-4917, 2001.
    24.T. S. Yang, J. Y. Lai and M. S. Wong, “Combined effects of argon addition and substrate bias on the formation of nanocrystalline diamond films by chemical vapor deposition,” Journal of Applied Physics, Vol. 92, No. 9, pp. 3307-3309, 2002.
    25.X. Feng, Z. D. Wen, W. Min, “Grid and substrate bias effects on mechanical properties of diamond films prepared by HFCVD,” Journal of Applied Physics, Vol. 19, No. 8 pp.2011-2018,2006.
    26.A. Erdemir, C. Bindal, G. R. Fenske, C. Zuiker, A. R. Krauss, D. M. Gruen, “Friction and wear properties of smooth diamond films grown in fullerene argon plasmas,” Diamond & Related Materials, Vol. 5, pp. 923-927, 1996.
    27.N. Woehrl and V. Buck, “Influence of hydrogen on the residual stress in nanocrystalline diamond films,” Diamond & Related Materials, Vol.16, pp. 748-752, 2007.
    28.李輝煌,田口方法/品質設計的原理與實務/Taguchi methods/principles and practices of quality design,高立圖書有限公司,台灣台北,民國八十九年。
    29.田口玄一原著,陳耀茂譯,田口統計解析法,五南圖書出版股份有限公司,台灣台北,民國九十二年。
    30.E. Zeiler, S. Schwarz, S. M. Rosiwal and R. F. Singer, "Structural changes of tungsten heating filaments during CVD of diamond," Materials Science and Engineering, Vol. 335, pp. 236-245, 2002.
    31.E. Vietzke, V. Philipps, K. Flaskamp, P. Koidl and C. Wild. “Nucleation during deposition of hydrocarbon ions as a function of substrate temperature,” Surface Coating Technology, Vol. 47, pp. 156-167, 1991.
    32.L. L. Connell, J. W. Fleming and J. E. Bulter, “Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical‐vapor deposition of diamond,” Journal of Applied Physics, Vol. 78, No. 6, pp. 3622-3634, 1995.
    33.A.M. Bonnot, “Synthesis of diamond thin films by hot-filament- assisted chemical vapour deposition,” Thin Solid Films, Vol. 185, No. 111, pp. 111-121, 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE