研究生: |
王馨珮 Wang, Hsin-Pei |
---|---|
論文名稱: |
針對以憶阻器為基礎之邏輯電路來達成運算脈衝數量優化的合成研究 On Synthesizing Memristor-Based Logic Circuits with Minimal Operational Pulses |
指導教授: |
王俊堯
Wang, Chun-Yao |
口試委員: |
林榮彬
Lin, Rung-Bin 黃世旭 Huang, Shih-Hsu |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 憶阻器 、邏輯合成 、蘊含邏輯 、最小化 、扇出 |
外文關鍵詞: | Memristor, Logic Synthesis, Implication Logic, Minimization, Fanout |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
憶阻器(Memristor)這幾年來廣泛應用於各種領域的兩端點奈米元件,例如:機器學習和神經形態系統,引起很大的關注。憶阻器亦可被用於實現蘊含邏輯閘,以及邏輯電路。然而,在以憶阻器為基礎之邏輯電路上,其扇出點有一些限制而需要特別的處理。而在另一方面,除了憶阻器的數量之外,另一種用來測量以憶阻器為基礎之邏輯電路的品質的指標是運算脈衝數量。因此,在本研究中,我們提出以最小運算脈衝數量為目標的合成演算法,來處理使用蘊含閘所構成之以憶阻器為基礎的邏輯電路的扇出問題。我們在MCNC的電路上進行實驗,其結果顯示我們所提出的演算法與現有技術相比,平均可以減少29%的運算脈衝數量和36%的憶阻器總數。
Memristor, which is a two-terminal nanodevice widely used in various fields, e.g., machine learning and neuromorphic systems, has attracted much attention these years. Memristor can also be used to realize an implication logic gate and thus logic circuits. However, the fanouts in a memristor-based logic circuit have some constraints and need to be processed with special care. On the other hand, in addition to the number of memristors, the number of operational pulses is another metric to measure the quality of a memristor-based logic circuit. Hence, in this thesis, we propose a synthesis algorithm to deal with the fanout problems in memristor-based logic circuits using implication logic gates for having a minimal number of operational pulses. We conducted experiments on a set of MCNC benchmarks. The experimental results show that the proposed algorithm can reduce 29% operational pulses and 36% memristor count on average compared with the state-of-the-art.
[1] J. Burger, C. Teuscher, and M. Perkowski, "Digital Logic Synthesis for Memristors," in Proc. Reed-Muller Workshop, 2013.
[2] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, R.S. Williams, "Memristive Switches Enable Stateful Logic Operations via Material Implication," Nature, vol. 464, pp. 873-876, April 2010.
[3] J. P. Carbajal, J. Dambre, M. Hermans, and B. Schrauwen, "Memristor Models for Machine Learning," Neural Computation, no. 27, pp. 725-747, 2015.
[4] L. O. Chua, "Memristor-The Missing Circuit Element," IEEE Trans. on Circuit Theory, vol. 18, pp. 507-519, 1971.
[5] A. K. Maan, D. A. Jayadevi, and A. P. James, "A Survey of Memristive Threshold Logic Circuits," IEEE Trans. on Neural Networks and Learning Systems, vol. 28, pp. 1734-1746, May 2016.
[6] G. Kumar and K. Datta, "Design of digital functional blocks using hybrid memristor structures," in Proc. IEEE TENCON, November 2015.
[7] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, "MAGIC-Memristor Aided Logic," IEEE Trans. on Circuits and Systems II, vol. 61, no. 11, pp. 895-899, November 2014.
[8] E. Lehtonen and M. Laiho, "Stateful Implication Logic with Memristor," in Proc. IEEE International Symposium on Nanoscale Architectures, pp. 33-36, July 2009.
[9] E. Lehtonen, J.H. Poikonen, and M. Laiho, "Two Memristors Suffice to Compute All Boolean Functions," Electron. Lett., vol. 46, no. 3, pp. 239-240, February 2010.
[10] F. Lalchhandama, B. G. Sapui, and K. Datta, "An Improved Approach for the Synthesis of Boolean Functions Using Memristor Based IMPLY and INVERSE-IMPLY Gates," in Proc. IEEE Computer Society Annual Symposium on VLSI, pp. 319-324, July 2016.
[11] A. Raghuvanshi, "Synthesis of Incompletely Specied Logic Functions With Memristor-Realized Material Implication Gates and a New Notation to Describe Circuits From Such Gates," in Proc. IEEE 44th International Symposium on Multiple-Valued Logic, 2014.
[12] A. Raghuvanshi and M. Perkowski, "Logic Synthesis and a Generalized Notation for Memristor-Realized Material Implication Gates," in Proc. IEEE IC-CAD, pp. 470-477, 2014.
[13] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The Missing Memristor Found," Nature, vol. 453, pp. 80-83, May 2008.
[14] M. Teimoory, A. Amirsoleimani, J. Shamsi, A. Ahmadi, S. Alirezaee, and M. Ahmadi, "Optimized Implementation of Memristor-Based Full Adder by Material Implication Logic," in Proc. IEEE International Conference on Electronics, Circuits and Systems, pp. 562-565, December 2014.
[15] I. Vourkas and G. Ch. Sirakoulis, "Emerging Memristor-Based Logic Circuit Design Approaches: A Review," IEEE Circuits and Systems Magazine, vol. 16, pp. 15-30, August 2016.
[16] A. N. Whitehead and B. Russell, "Principia Mathematica," vol. I, no. 7, Cambridge University Press, 1910.
[17] S. Wang, W. Wang, C. Yakopcic, E. Shin, T. M. Taha, and G. Subramanyam, "Memristor Devices for use in Neuromorphic Systems," in Proc. IEEE National Aerospace and Electronics Conference, July 2016.
[18] C. Yakopcic, T. M. Taha, and R. Hasan, "Hybrid Crossbar Architecture for a Memristor Based Memory," in Proc. IEEE National Aerospace and Electronics Conference, June 2014.
[19] Berkeley Logic Synthesis and Verication Group. ABC: A System for Sequential Synthesis and Verication. Available: https://people.eecs.berkeley.edu/~alanmi/abc/