簡易檢索 / 詳目顯示

研究生: 魏修平
Wei, Hsiu-Ping
論文名稱: 具金屬載板之三維堆疊式嵌板型晶圓級封裝其結構可靠度暨熱傳分析
Reliability and Thermal Analysis of Three-dimensional Stacked Chip-on-Metal Panel Level Package (COM PLP)
指導教授: 江國寧
Chiang, Kuo-Ning
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 143
中文關鍵詞: 三維堆疊封裝具金屬載板之嵌板型晶圓級封裝可靠度分析熱傳分析因子設計敏感度分析有限元素法
外文關鍵詞: Three-dimensional stacked package, Chip-on-metal panel level package (COM PLP), Reliability analysis, Thermal analysis, Factorial designs, Analysis of variance (ANOVA), Finite element method (FEM)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子產品輕薄短小及功能多樣化之潮流,由傳統之二維封裝型態轉移至新型之三為堆疊封裝已為必然之趨勢。對三維堆疊封裝而言,晶圓級封裝(Wafer Level Package, WLP)技術可以覆晶(Flip Chip, FC)之方式直接於晶圓上完成封裝之製程並擁有良好之重工性,因而可有效降低三維堆疊封裝或系統式封裝(System in Package, SiP)之製程成本。
    本論文中亦提出一具有堆疊及扇出(Fan-out)特性之新式具金屬載板之嵌板型晶圓級封裝(Chip-on-Metal Panel Level Package, COM PLP),其先將晶片黏著於金屬晶片載板上,再利用高分子聚合材料填充晶片周圍之孔穴,透過圍繞於晶片四周之高分子聚合物材料可使晶片之電訊接點重新分佈並增加其接點間距,達到扇出之目的。另一方面,本封裝結構中之軟性高分子材料可作為應力緩衝層,進一步增加結構中焊錫接點之使用壽命。此外,本結構使用具有導電特性之金屬晶片載板,將可同時有效釋放內埋晶片於使用中所產生之熱能。
    為清楚瞭解所提出之新式嵌板型晶圓級封裝之熱-機械力學特性與散熱效能,本論文針對所提出之封裝結構建立上板後之有限元素模型進行參數化分析。根據參數化分析之結果,更進一步參考統計實驗設計中因子設計法(Factorial Designs)進行敏感度分析(Analysis of Variance, ANOVA),藉此獲得各設計因子之敏感度與因子間交互作用之關係。
    研究結果指出此新式封裝結構中焊錫接點之疲勞壽命有相當優異之表現,因此破壞模式轉換為須同時考量電訊接點以及結構內部貫通電極或金屬線路之偶合形式。於熱傳分析方面,本新式封裝結構因使用金屬晶片載板而保持類似覆晶封裝之良好散熱能力。最後根據本論文中對於結構可靠度以及散熱效能之研究,可依照不同之設計參數歸納出對應之設計規範,其望可作為後續研究之參考。


    With the current trend in multi-functioning and minimizing the volume of electronic products, it is now necessary to shift from traditional two-dimensional packaging into three-dimensional (3-D) stacked packaging. In 3-D stacked packaging, the wafer-level-package (WLP) may be an effective solution because it completes the packaging operation directly on the wafer in flip chip manner and has good re-workability, which could reduce packaging costs in stacked packages and multi-chip modules.
    In this paper, a new packaging technology, chip-on-metal (COM) panel level package (PLP) with stacking and fan-out capabilities, is proposed. The concept of this package is to use the filler polymer material to pack the trench of the chip which is back-sided attached to the metallic chip carrier. Therefore, the solder bumps could be located on both the filler polymer and the chip surfaces by the redistribution lines and the pitch of the chip side is fanned-out. In addition, the soft polymer material could be treated as the stress buffer layer to improve the solder joint fatigue life. Moreover, the metallic chip carrier could be helpful in dissipating the generated heat from the chip.
    To assess the thermo-mechanical characteristic and thermal performance of the proposed PLP, the finite element analysis (FEA) in the board level is carried out. The parametric analysis of the COM PLP is studied to enhance its reliability characteristic and thermal performance. Furthermore, the factorial designs with the analysis of variance (ANOVA) are conducted to obtain the sensitivity information and interaction relationship between factors of the COM PLP.
    The results of this study showed that the predicted life cycles of solder joints in the PLP is found to possess outstanding performance. However, the stress concentration in via-through-holes (VTH) and redistribution traces may become another failure mechanism. In terms of thermal performance, the metallic chip carrier can rapidly dissipate the heat generated from the chip. Based on the reliability and thermal performance assessment, the design windows of the COM PLP and stacked PLP are established. Finally, this study is expected to become an important reference material for future research.

    目 錄 中文摘要 英文摘要 目錄 表目錄 圖目錄 第一章 緒論 1.1電子封裝簡介 1.1.1三維堆疊封裝 1.1.2電子封裝可靠度測試 1.2研究動機 1.3文獻回顧 1.4研究目標 第二章 理論分析 2.1錫球外型預測 2.2有限元素法理論基礎 2.3數值方法與收斂準則 2.4熱傳分析理論基礎 2.5等效熱傳導係數分析 2.5.1封裝體中電路板之等效熱傳導係數 2.5.2封裝體中介電層之等效熱傳導係數 2.6封裝結構可靠度之預測 2.7因子設計法 第三章 研究方法 3.1有限元素法熱傳分析驗證 3.1.1有限元素模型之建立 3.1.1.1可靠度分析有限元素模型之建立 3.1.1.2熱傳分析有限元素模型之建立 3.1.2模擬結果與實驗之驗證 3.2具金屬載板之嵌板型晶圓級封裝有限元素模型建立 3.2.1結構分析之有限元素模型 3.2.2結構分析有限元素模型之材料參數設定 3.2.3結構分析有限元素模型之幾何尺寸、邊界條件與負載 3.3熱傳分析有限元素模型之建立 3.3.1熱傳分析有限元素模型之材料參數設定 3.3.2熱傳分析之有限元素模型幾何尺寸、邊界條件與負載設定 第四章 分析結果與討論 4.1利用加速熱循環試驗進行參數化分析之模擬結果 4.1.1結構可靠度分析基準有限元素模型之模擬結果 4.1.1.1筆直型貫通電極之模擬結果 4.1.1.2繞道型貫通電極之模擬結果 4.1.2結構可靠度分析有限元素模型之幾何參數化分析模擬結果 4.1.2.1堆疊層數變化之效應 4.1.2.2晶片黏著膠厚度變化之效應 4.1.2.3介電層厚度變化之效應 4.1.2.4晶片載板厚度變化之效應 4.1.2.5晶片厚度變化之效應 4.1.3結構可靠度分析有限元素模型之材料參數化分析模擬結果 4.1.3.1晶片載板材料特性變化之效應 4.1.3.2介電層材料特性變化之效應 4.1.3.3高分子填充材料特性變化之效應 4.2熱傳分析有限元素模型之模擬結果 4.2.1熱傳分析基準有限元素模型之模擬結果 4.2.2有限元素模型之參數化分析模擬結果 4.2.2.1堆疊層數變化之效應 4.2.2.2晶片黏著膠厚度變化之效應 4.2.2.3介電層厚度變化之效應 4.2.2.4晶片載板厚度變化之效應 4.2.2.5晶片面積變化之效應 4.3實驗設計法與參數敏感度分析 4.3.1因子、水準與回應值之選擇 4.3.2因子設計進行敏感度分析之結果 4.3.2.1結構可靠度因子設計分析進行敏感度分析之結果 4.3.2.2熱傳因子設計分析進行敏感度分析之結果 第五章 結論與未來展望 參考文獻 圖表

    參考文獻
    1. T. Tabaru and S. Uemera, “High-speed, high-density TSOP memory module series,” Mitsubishi Denki Giho, vol. 67, no3, pp367-371, 1993
    2. N. Takahashi, N. Sneba, Shimada. Y., Morizaki. I. and Tokuno. K., “3-Dimensional Memory Module,” IEEE Electronic Components and Technology Conference, pp.113-118, Orlando, FL, USA, May 1996
    3. T. Kikkawa, R. Ideda, T. Matsuda and T. Watanade, “Development of 3-Dimensional Memory Module Using Anisotropic Conductive Adhesion Films,” IEEE/CPMT Berlin Int’l Electronics Manufacturing Technology Symposium, pp.31-37, Berlin, Germany, April 1998
    4. Y. Yano, T. Sugiyama, S. Ishihara, Y. Fukui, H. Juso, K. Miyata, Y. Sota and K. Fujita, “Three-dimensional very thin stacked packaging technology for SiP,” IEEE Electronic Components and Technology Conference, pp.1329-1334, San Diego, CA, USA, May 2002
    5. T. Yamazaki, Y. Sogawa, R. Yoshino, K. Kata, I. Hazeyama, and S. Kitajo, “Real Chip Size Three-Dimensional Stacked Package, ” IEEE Transactions on Advanced Packaging, Vol. 28, NO. 3, pp. 397-403, August 2005
    6. L. Wu, Y. P. Wang, S. C. Kee, B. Wallace, C. S. Hsiao, C. K. Yeh, T. D. Her and R. Lo, “The Advent of 3-D Package Age,” IEEE/CPMT Berlin Int’l Electronics Manufacturing Technology Symposium, pp.102-107, Santa Clara, CA, USA, 2000
    7. W. Koh, “System in Package (SiP) Technology Applications,” IEEE Electronic Components and Technology Conference, pp.61-66, China, August 2005
    8. S.W. Lee, Ronald Hon, Shawn X. D. Zhang, C. K. Wong, “3D Stacked Flip Chip Packaging with Through Silicon Vias and Copper Plating or Conductive Adhesive Filling,” IEEE Electronic Components and Technology Conference, pp.795-801, Orlando, FL, USA, May 2005
    9. 江國寧,微電子系統封裝基礎理論與應用技術,滄海書局,2006
    10. R. R. Tummala, Fundamental of Microsystems Packaging, McGraw -Hill, New York, pp.886-888, 2001
    11. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1995
    12. J. H. Lau, C. Chang, and S. -W. R. Lee, “Solder joint crack propagation analysis of wafer-level chip scale package on printed circuit board assemblies,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, Issue: 2, pp. 285-292, June 2001
    13. K. N. Chiang, Z. N. Liu, and C. T. Peng, ”Parametric reliability analysis of no-underfill flip chip package,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, Issue: 4, pp. 635-640, Dec. 2001
    14. J. H. Lau, “Critical issues of wafer level chip scale package (WLCSP) with emphasis on cost analysis and solder joint reliability,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, Issue: 1, pp. 42-50, Jan. 2002
    15. J. H. Lau, S. -W. R. Lee, “Effects of build-up printed circuit board thickness on the solder joint reliability of a wafer level chip scale package (WLCSP)”, IEEE Transactions on Components and Packaging Technologies, Vol. 25, Issue: 1, pp. 3-14, March 2002
    16. K. M. Chen and K. N. Chiang, “Impact of Probing Procedure on Flip Chip Reliability”, Journal of Microelectronics Reliability, Vol. 43, pp. 123-130, January, 2003
    17. Y. T. Lin, C. T. Peng and K. N. Chiang, “Parametric Design and Reliability analysis of WIT Wafer Level Packaging,” ASME Transactions on Journal of Electronic Package, Vol. 124, 2002
    18. J. H. Lau, Ball Grid Technology, McGraw-Hill, Inc., New York, 1995.
    19. M. C. Yew, C. A. Yuan, C. Y. Chou and K. N. Chiang, Taiwan patent no. I269460, “A 3D electronic packaging structure using conductive substrate,” 2006
    20. C. Yuan, G. Q. Zhang, C. S. Huang, C. H. Yu, C. C. Yang, W. K. Yang, M. C. Yew, C. N. Han and K. N. Chiang, “Design and Analysis of a novel fan-out WLCSP structure,” 7th International conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSIME2006, pp. 297-304, Como (Milano), Italy, April 2006
    21. M. C. Yew, C. Yuan, C. N. Han, C. S. Huang, W. K. Yang, K.N. Chiang, “Factorial Analysis of Chip-on-Metal WLCSP Technology with Fan-Out Capability,” 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA2006, pp. 223-228, Singapore, July 2006
    22. S. F. Al-sarawi, D. Abbott, and P. D. Franzon, “A Review of 3-D Packaging Technology,” IEEE Transactions on Components, Packaging and Manufacturing Technology-PART B, VOL. 21, NO. 1, 1998
    23. Q. Yu, M. Shiratori and Y. Ohshima, “A Study of the Effects of BGA Solder Geometry on Fatigue Life and Reliability Assessment,” InterSociety Conference on Thermal Phenomena in Electronic Systems, Itherm, pp. 229-235, Seattle, WA, USA, May 1998
    24. K. N. Chiang, Y. T. Lin, and H. C. Cheng, “On Enhancing Eutectic Solder Joint Reliability Using a Second-Reflow-Process Approach,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 1, pp.9-14, 2000
    25. J. C. Lin, H. C. Cheng, and K. N. Chiang, “Design and Analysis of Wafer-Level CSP with Double Pad Structure,” IEEE Transactions on Components and Packaging Technologies, Vol. 28, No. 1, pp. 117-126, 2005
    26. P.E. Garrou, W. B. Rogers, D. M. Scheck, A. J. G. Strandjord, Y. Ida, and K. Ohba, “Stress-buffer and passivation processes for Si and GaAs IC's and passive components using photosensitive BCB process technology and reliability data,” IEEE Transactions on Advanced Packaging, Vol. 22, No. 3, pp. 487-498, 1999
    27. A. Badihi, “Ultrathin wafer level chip size package,” IEEE Transactions on Advanced Packaging, Vol. 23, NO. 2, pp. 212-214, 2000
    28. M. C. Yew, C. C. Chiu, S. M. Chang and K. N. Chiang, “A Novel Crack and Delamination Protection Mechanism for a WLCSP Using Soft Joint Technology,” Soldering & Surface Mount Technology, Vol. 18, Issue 3, pp. 3-13, 2006
    29. Y. Fukui, Y. Yano, H. Juso, Y. Matsune, K. Miyata, A. Narai, Y. Sato, Y. Takeda, K. Fujita and M. Kada, “Triple-Chip Stacked CSP,” IEEE Electronic Components and Technology Conference, pp. 385-389, Las Vegas, NV, USA, May 2000
    30. B. A. Zahn, “Finite element based solder joint fatigue life predictions for a same die size: Stacked: Chip scale: Ball grid array package,” International electronics manufacturing technology symposium, IEMT 2002, San Jose, CA, USA, July 2002
    31. R. Kapoor, L. B. Kuan, L. Hao, “Package Design Optimization and Materials Selection for Stack Die BGA Package,” IEEE/SEMI 29th International Electronic Manufacturing Technology Symposium, San Jose, CA, USA, January 2004
    32. J. Y. Kim, W. J. Kang, Y. H. Ka, Y. J. Kim, E. S. Sohn, S. S. Park, J. D. Kim, C. H. Lee, A. Yoshida, A. Syed, “Board level reliability study on three-dimensional thin stacked package,” IEEE Electronic Components and Technology Conference, vol. 1, pp.624-629, Caesars Palace, Las Vegas, Nevada, USA, May 2004
    33. C. Noritake, P. Limaye, M. Gonzalez and Bart Vandevelde, “Thermal Cycle Reliability of 3D Chip Stacked Package Using Pb-free Solder Bumps: Parameter Study by FEM Analysis,” 7th International conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSIME2006, pp. 1-6, Como (Milano), Italy, April 2006
    34. S. W. Park, J. M. Kim, H. G. Baik, S. H. Kim, J. K. Hong, and H. S. Chun, ”Thermal and electrical performance for wafer level package,“ IEEE Electronic Components and Technology Conference, pp. 301 -310, Las Vegas, Nevada, USA, May 2000
    35. W. H. Chen, H. C. Cheng, and H. A. Shen, “An Effective Methodology for Thermal Characterization of Electronic Packaging,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, NO. 1, pp. 222-232, March 2003
    36. T. H. Kim, J. H. Baek, S. H. Seol, J. J. Kim, Y. S. Kim, Y. B. Sun and S. Y. Oh, “Thermal Characterization of 3-Dimensional Memory Module,” Twelfth IEEE SEMI-THERMTM Symposium, pp. 42-49, Austin, TX, USA, March 1996
    37. T. Kimura, O. Okuda, H. Ishikawa and Y. Suzuki, “Bare Chip Stacking Structure for MCM Production,” International Conference on Multichip Modules and High Density Packaging, pp. 303-307, Denver, CO, USA, April 1998
    38. D. I. Yoo and S. H. Pan, “Thermal Analysis of Stacked Die on FBGA Package,” APACK 2001 Conference on Advance in Package, Singapore, 2001
    39. S. Krishnan, Y. G. Kim and I. Mohammed, “Thermal Performance Characteristics of Folded Stacked Packages,” 18th IEEE SEMI-THERMTM Symposium, pp. 42-49, San Jose, CA, USA, March 2002
    40. B. A. Zahn, “Evaluation of Simplified and Complex Thermal Finite Element Models for a 3-Die Stacked Chip Scale Ball Grid Array Package,” IEEE/CPMT/SEMI 29th International Electronics Manufacturing Technology Symposium, pp. 106-112, San Jose, CA, USA, January 2004
    41. L. S. Goldmann, “Geometric Optimization of Controlled Collapse Interconnections,” IBM J. Res. Develop., Vol. 13, pp. 251-265, May 1969
    42. S. M. Heinrich, M. Schaefer, S. A. Schroeder, and P. S. Lee, “Prediction of Solder Joint Geometries in Array-Type Interconnects,” ASME Journal of Electronic Packaging, Vol. 118, pp. 114-121, 1996
    43. K. A. “Brakke, Surface Evolver Manual,” version 2.01 Minneapolis, MN: The Geometry Center, 1996
    44. L. Li and B. H. Yeung, “Wafer Level and Flip Chip Design Through Solder Prediction Models and Validation,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, NO. 4, pp. 650-654, 2001
    45. B. H. Yeung and T. Y. T. Lee, “Evaluation and Optimization of Package Processing, Design, and Reliability through Solder Joint Profile Prediction,” IEEE Electronic Components and Technology Conference, pp. 925-930, Orlando, FL, USA, May 2001
    46. K. N. Chiang and C. Y. Yuan, “An Overview of Solder Bump Shape Prediction Algorithm with Validations,” IEEE Transactions on Advanced Packaging, Vol. 24, NO. 2, pp. 158-162, 2001
    47. R. D. Cook, D. S. Markus, and M. E. Plesha, Concepts and Applications of Finite Element Analysis, 4th, John Wiley & Sons, Inc., New York, 2002
    48. J. C. Lin, “Design, Reliability and Thermal Analysis of Micro-Electronic Devices Packaging,” Ph. D. Thesis, National Tsing Hua University, Taiwan, 2003
    49. ANSYS User’s Manual, ANSYS Inc. Company
    50. W. F. Chen and D. J. Han, Plasticity for Structural Engineers, GAU LIH BOOK CO., LTD., 1995
    51. G. N. Ellison, Thermal Computations for Electronic Equipment, Van Nostrand Reinhole Company, New York, 1989
    52. G. Ridsdale, J. Bennett, J. Bigler and V. M. Torrers, “Thermal Simulation to Analyze Design Features of Plastic Quad Flat Package,” The International Journal of Microcircuits and Electronic Packaging, Vol. 19, pp. 103-109, 1996
    53. J. H. Lau, “Solder Joint Reliability of Flip Chip and Plastic Ball Grid Array Assemblies Under Thermal, Mechanical and Vibration Conditions,” IEEE Transactions on Components, Packaging and Manufacturing Technology-Part B, Vol. 19, NO. 4, pp. 728-735, 1996
    54. V. Gektin, A. Bar-Cohen and J. Ames, “Coffin-Manson Fatigue Model of Underfilled Flip-Chips,” IEEE Transactions on Components, Packaging and Manufacturing Technology-Part A, Vol. 20, NO. 3, pp. 317-326, 1997
    55. H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, pp. 423-432, 1986
    56. D. C. Montgomery, Design and Analysis of Experiments, 5th edition, John Willy and Sons, Inc., New York, 2001
    57. M. G. Pecht, R. Agarwal, P. McCluskey, T. Dishongh, S. Javadpour and R. Mahajan, Electronic Packaging Materials and Their Properties, CRC Press LLC, N. Y., 1999
    58. H. L. J. Pang, T. P. Wang, X. Q. Shi and Z. P. Wang, “Sensitivity Study of Temperature and Strain Rate Dependent Properties on Solder Joint Fatigue Life,” IEEE/CPMT Electronics Packaging Technology Conference, pp. 184-189, Singapore, 1998
    59. R. Iannuzzelli, “Predicting Plated-Through-Hole Reliability in High Temperature Manufacturing Processes,” IEEE Electronic Components and Technology Conference, pp. 410-421, Atlanta, GA, USA, May 1991
    60. M. Gonzalez, M. V. Bulcke, B. Vandevelde, E. Beyne, Y. Lee, B. Harkness, H. Meynen, “Finite Element Analysis of an Improved Wafer Level Package using Silicone Under Bump (SUB) layers,” 5th International conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSIME2004, pp. 163-168, Brussels, Belgium, May 2004
    61. M. Brunnbauer, E. Fürgut, G. Beer, T. Meyer, H. Hedler, J. Belonio, E. Nomura, K. Kiuchi, K. Kobayashi, Infineon Technologies AG, “An Embedded Device Technology Based on a Molded Reconfigured Wafer,” IEEE Electronic Components and Technology Conference, pp. 547-551, San Diego, FL, USA, May 2006
    62. R. Dudek, H. Walter, R. Doering, B. Michel, T. Meyer, J. Zapf, and H. Hedler, Fraunhofer IZM, “Thermo-mechanical Design of Resilient Contact Systems for Wafer Level Packaging,” 7th International conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSIME2006, pp. 1-7, Como (Milano), Italy, April 2006
    63. X. Zhang, T. Y. Tee, and C. Cachia, “Nonlinear Elasto-plastic Analysis of Wire Bond Reliability for Optical LQFP Package,” The 6th Electronics Packaging Technology Conference (EPTC 2004), pp. 718-722, Singapore, December 2004
    64. JEDEC Solid State Technology Association, “Temperature Cycling,” JEDS22-A104-B , EIA & JEDEC, U.S.A., 2000
    65. JEDEC Standard EIA/JESD51, “Methodology for the Thermal Measurement of Component Packages (Single Semiconductor Device),” 1995
    66. JEDEC Standard EIA/JESD51-1, “Integrated Circuits Thermal Measurement Method – Electrical Test Method (Single Semiconductor Device),” 1995
    67. JEDEC Standard EIA/JESD51-2, “Integrated Circuits Thermal Test Method Environmental Conditions – Natural Convection (Still Air),” 1995
    68. JEDEC Standard EIA/JESD51-9, “Test Boards for Area Array Surface Mount Package Thermal Measurements,” 1995

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE