簡易檢索 / 詳目顯示

研究生: 邱奕哲
Chiu, I-Che
論文名稱: 探討不同製程之碳化矽複合材料於高溫離子輻照環境下之空孔形成
Effect of ion irradiation on void formation in different processed SiC/SiCf composites under high temperature environments
指導教授: 開執中
Kai, Ji-Jung
口試委員: 陳福榮
Chen, Fu-Rong
張立
Li, Chang
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: 碳化矽複合材料離子輻照空孔
外文關鍵詞: SiC composites, ion irradiation, void
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽複合材料是目前公認最具有潛力之核能結構材料,擁有核能結構材料所需之條件,低活性、耐輻照、高溫機械性質佳、抗腐蝕等優點。
    本論文主要研究全纖維碳化矽複合材料SA-Tyrannohex於高溫矽離子與氦離子輻照下之微結構變化,並與其他核能級碳化矽複合材料之空孔形成做一比較。本實驗利用清華大學加速器館之9SDH串級式加速器以及高能離子佈植機分別進行佈植,分析條件為Si2+,5 dpa~150 dpa分別於1350℃,1500℃以及He+,15000 appm於1300℃、1500℃。
    從單射束矽離子輻照結果可知,於1350℃以及1500℃環境下,纖維中都明顯有圓形小空孔析出,空孔直徑約2 nm,並不隨劑量上升而顯著成長,空孔密度隨著劑量上升至約1024 #/m3,並與Hi-Nicalon Type-S複合材料、Tyranno-SA複合材料以及CVD多晶碳化矽比較可知,由於本材料所使用之纖維晶粒約300 nm,較複合材料「基材」部分以及多晶碳化矽晶粒小,所以晶界面積較大,較不易造成空缺聚集形成空孔,顯示有較佳之抗空孔能力。
    單射束氦離子輻照方面,也由於晶界面積關係,所以氦離子無法有效堆積形成氦氣泡,顯示SA-Tyrannohex全纖維碳化矽複合材料,對於氦離子單射束輻照有極佳之抗氦氣泡之能力。


    Silicon carbide composites are considered as the plasma facing material in fusion reactors. Therefore, high dose neutron irradiation and helium accumulation due to emission of alpha-particles from (n,α) nuclear reaction in fusion reactor are significant issues in mechanical property. This thesis will focus on the effect of ion irradiation on void formation in different processed SiC/SiCf composites under high temperature environments.
    In this study, The novel SiC composite – SA-Tyrannohex SiC fiber-bonded composite was irradiated by 5.1 MeV-Si2+ and 300 keV-He+ at 1300℃ to 1500℃, respectively. The dose was up to 150 dpa and the helium accumulation concentration was 15000 appm. The microstructure evolution of irradiated SiC was examined by transmission electron microscopy.
    The average diameter of cavities induced by Si2+ irradiation increased both with the increasing temperature and irradiation damage, up to 2.5 nm at 150 dpa/1500℃. However, the number density of cavity was almost saturated at 50 dpa. No helium bubble was abserved in the 15000 appm irradiated sample at 1300℃ and 1500℃.
    Comparison to Hi-Nicalon Type-S compsite、Tyranno-SA composite and CVD polycrystalline SiC, SA-Tyrannohex fiber-bonded composite appears to has excellent resistance to cavity formation due to small grain size during Si2+ and He+ irradiation at high temperatures.

    第一章 研究動機 1 第二章 文獻回顧 5 2.1 核融合 5 2.2 第一面牆材料(PFM-Plasma Facing Materials) 7 2.3 碳化矽/碳化矽複合材料 8 2.3.1 碳化矽纖維 9 2.3.2 碳化矽基材 11 2.4 碳化矽之輻射損傷 16 第三章 實驗原理與方法 31 3.1 SRIM模擬程式計算 31 3.2 離子佈植輻照系統 32 3.2.1 加速器與離子佈植機系統 32 3.2.2 入射離子與靶材之交互作用 33 3.2.3 雙射束離子照射系統 34 3.3 實驗條件與流程 34 3.4 實驗分析方法 35 3.4.1 電子顯微鏡原理 35 3.4.2 電子束與物質之交互作用 36 3.4.3 穿透式電子顯微鏡系統(TEM) 37 3.4.4 電子槍 38 3.4.5 X光能量分散光譜儀(EDS) 39 3.4.6 電子能量損失能譜儀(EELS) 40 3.5 穿透式電子顯微鏡(TEM)試片製備 42 第四章 實驗結果與討論 54 4.1 SA-Tyrannohex未輻照前之微結構分析 54 4.2 SA-Tyrannohex受Si2+離子輻照之實驗條件與現象 56 4.2.1 空孔(Void)與氦氣泡(Helium Bubble)形成條件與機制 56 4.2.2 SA-Tyrannohex受Si2+離子輻照之輻射損傷分析 57 4.2.3 比較不同製程碳化矽複合材料之空孔形成 59 4.2.4 SA-Tyrannohex受He+離子輻照之輻射損傷分析 62 第五章 結論 80 第六章 未來實驗方向 81 參考文獻 82

    [1] 科學月刊,十月號/1977,91期,用不盡的新能源──核融合
    [2] John Lindl, “Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Physics of Plasmas 2, 3933 (1995)
    [3] 陳秋榮,物理雙月刊,卅卷四期,台灣,中華民國九十七年,p.444
    [4] 牛頓雜誌, 七月號/1998, 182期, p90~95.
    [5] Y. Koide, “Progress in Confinement and Stability with Plasma Shape and Profile Control for Steady-State Operation in JT-60”, Physics of Plasmas, 4(5), 1623 (1997)
    [6] BD Bondarenko, “Role played by OA Lavrent'ev in the formulation of the problem and the initiation of research into controlled nuclear fusion in the USSR" Physics-Uspekhi, 44,844 (2001)
    [7] Wesson J., 1997, Tokamaks, Clarendon Press Oxford.
    [8] A.E.R.E. report GP/R 1807, December 1955.
    [9] F. Najmabadi, UCLA-PPG.-1323, 1991
    [10] S. Ueda, S. Nishio, Y. Seki, R. Kurihara, J. Adachi, S. Yamazaki, “A fusion power reactor concept using SiC/SiC composites” Journal of Nuclear. Materials., 258–263 (1998), p. 1589
    [11] A.S. Pérez Ramirez, A. Caso, L. Giancarli, N. Le Bars, G. Chaumat, J.F. Salavy, J. Szczepanski, “TAURO: a ceramic composite structural material self-cooled Pb-17Li breeder blanket concept”, Journal of Nuclear Materials, 233–237 (1996) 1257–1261
    [12] J. Winter, “A comparison of tokamak operation with metallic getters (Ti,Cr,Be) and boronization” Journal of Nuclear. Materials, 176&177 (1990), p. 14
    [13] R.Behrisch, “Transmutation of plasma facing materials by the neutron flux in a DT fusion reactor”, Journal of Nuclear. Materials, Volumes 258–263, Part 1, October 1998, Pages 686–693
    [14] G.R. Hopkins, “Silicon Carbide and Graphite Materials for Fusion Reactors”, in: IAEA Symposium on Plasma Physica and controlled Nuclear Fusion Research, Tokyo, Japan, 1974.
    [15] 林博文, 碳化矽及其他碳化物, 陶瓷技術手冊(下)修訂版, pp.745-776,1999.
    [16] T, Noda,“Evaluation of transmutation and low induced radioactivity and requirements for candidate structural materials”, Journal of Nuclear. Materials, 233–237 (1996), p. 1475
    [17] 尹衍升,氧化鋯陶瓷及其複合材料,2004,化學工業出版社
    [18] Krishan K. Chawla, Composite Materials, 2nd edition, 1998, Springer
    [19] Michio Takeda, Yoshikazu Imai, Hiroshi Ichikawa, Noboru Kasai, Tadao Seguchi, Kiyohito Okamura, Comp. Sci. Tech. 59 (1999) 793-799.
    [20] Michio Takeda, Akira Urano, Jun-ichi Sakamoto, Yoshikazu Imai, J. Nucl. Mater. 258-263 (1998) 1594-159.
    [21] A. Hasegawa, A. Kohyama, R. H. Jone, L. L. Snead, B. Riccardi, P. Fenici, “Critical issues and current status of SiC/SiC composites for fusion”, Journal of Nuclear. Materials, 283-287 (2000) 128-137.
    [22] Toshikatsu Ishikawa, “Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature”, Comp. Sci. Tech. 51, 2, (1994),135–144
    [23] Michio Takeda, “Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon Type S”, Journal of Nuclear Materials, 258–263 (1998) 1594–1599
    [24] Hiroshi Araki, Hiroshi Suzuki, Wen Yang, Shinji Sato, Tetsuji Noda, “Effect of high temperature heat treatment in vacuum on microstructure and bending properties of SiCf/SiC composites prepared by CVI”, Journal of Nuclear Materials, 258-263 (1998) 1540-1545.
    [25] A.Kohyama , Y. Katoh , L.L. Snead and R.H. Jones . “Development of SiC/SiC Composite for Fusion Application”.
    [26] R. Yamada, T. Taguchi, N. Igawa, “Mechanical and thermal properties of 2D and 3D SiC/SiC composites” Journal of Nuclear Materials, 283-287 (2000) 574-578
    [27] J. W. Warren, Ceram. Eng. Sci. Proc., (1985)
    [28] T.M. Besmann, B.W. Sheldon, R.A. Lowden, D. P. Stinton, “Vapor-Phase Fabrication and Properties of Continuous-Filament Ceramic”. Composites Science, Vol. 253, (1991)
    [29] Y. Katoh, A. Kohyama, Introduction to Fusion Reactor Engineering.
    [30] J. J. Brennan, “INTERFACIAL CHARACTERIZATION OF A SLURRY-CAST
    MELT-INFILTRATED SiC/SiC CERAMIC-MATRIX COMPOSITE” Acta MATERIALIA. 48(2000) 4619-4628.
    [31] S. P. Lee, Y. Katoh, J. S. Park, S. Dong, A. Kohyama, S. Suyama, H. K. Yoon, “Microstructural and mechanical characteristics of SiC/SiC composites with modified-RS process” Journal of Nuclear Materials, 289 (2001) 30-36.
    [32] S. P. Lee, Y. Katoh, A. Kohyama, “Microstructure analysis and strength evaluation of reaction sintered SiC/SiC composites” Scripta mater. 44 (2001) 153-157.
    [33] Y Katoh, S.M Dong, A Kohyama, “Thermo-mechanical properties and microstructure of silicon carbide composites fabricated by nano-infiltrated transient eutectoid process”, Journal of Fusion Engineering and Design, 61–62, (2002), 723–731
    [34] K. Shimoda, Akira Kohyama, Tatsuya Hinoki, “High mechanical performance SiC/SiC composites by NITE process with tailoring of appropriate fabrication temperature to fiber volume fraction”, Composites Science and Technology, 69, pp. 1623–1628, 2009
    [35] A. Kelly, C. Zweben (Eds.), Comprehensive Composite Materials, vol. 4, Elsevier Science, Amsterdam, 2000.
    [36] Y. Katoh , A. Kohyama, T. Nozawa, M. Sato, “SiC/SiC composites through transient eutectic-phase route for fusion applications”, Journal of Nuclear Materials, 329–333 (2004) 587–591
    [37] T. Hinoki, W. Zhang, A. Kohyama, S. Sato, T. Noda, “Effect of fiber coating on interfacial shear strength of SiC/SiC by nano-indentation technique” Journal of Nuclear Materials, 258-263, pp. 1567-1571, 1998
    [38] C. A. Lewinsohn, R. H. Jones, G. E. Youngblood, C. H. Henager, Journal of Nuclear Materials, 258-263, pp. 1557-1561, 1998
    [39] C.H. Henager Jr., R.H. Jones, Journal of the American Ceramic Society, 77(1994) 2381
    [40] Michio Takeda, Yoshikazu Imai, Yutaka Kagawa, Shu-Qi Guo, Mater. Sci. Eng. A, 286 (2000) 312-323.
    [41] T. Hinoki, L.L. Snead, Y. Katoh, A. Kohyama, R. Shinavski, “The effect of neutron-irradiation on the shear properties of SiC/SiC composites with varied interface” Journal of Nuclear Materials. 283-287(2000) 376-379.
    [42] Takashi Nozawa, Kazumi Ozawa, Sosuke Kondo, Tatsuya Hinoki, Yytai Katoh, Lance L. Snead, Akira Kohyama, J. ASTM International, March 2005, Vol.2, No.3
    [43] T. Taguchi, T. Nozawa, N. Igawa, Y. Katoh, S. Jitsukawa, A. Kohyama, T. Hinoki, L.L. Snead, “Fabrication of advanced SiC fiber/F-CVI SiC matrix composites with SiC/C multi-layer interphase” Journal of Nuclear Materials.. 329-333(2004) 572-576
    [44] H. Kishimoto , Y. Katoh , A. Kohyama “Microstructural stability of SiC and SiC/SiC composites under high temperature irradiation environment” Journal of Nuclear Materials 307–311 (2002) 1130–1134.
    [45] W. Zhang, T. Hiniki, Y. Katoh, A. Kohyama, T. Noda, T. Muroga, J. Yu, Journal of Nuclear Materials. 258-263 (1998) 1577.
    [46] Toshihiro Ishikawa, SA-Tyrannohex-based Composite for High Temperature Applications”, Advances in Science and Technology, 71, pp. 118-126, 2010
    [47] SA-Tyrannohex report, UBE industry.
    [48] T. Ishikawa, S. Kajii, K. Matsunaga, T. Hogami, Y. Kohtoku, T. Nagasawa “A Tough, Thermally Conductive Silicon Carbide Composite with High Strength up to 1600°C in Air ” Science, 282, (1998) 1295-1297.
    [49] T.Ishikawa, “High-strength alkali-resistant sintered SiC fibre stable to 2200 ℃”,Nature,391, (1998) 773-775.
    [50] Toshihiro Ishikawa et. al.,“A tough, thermally conductive silicon carbide composite with high strength up to 1600℃ in air”, Science, 282, pp. 1295-2697, 1998
    [51] T. Taguchi, “Effect of simultaneous ion irradiation on microstructural change of SiC/SiC composites at high temperature”, Journal of Nuclear Materials 307–311 (2002) 1135–1140.
    [52] T. Taguchi, “Synergistic effects of implanted helium and hydrogen and the effect of irradiation temperature on the microstructure of SiC/SiC composites” Journal of Nuclear Materials 335 (2004) 508–514
    [53] Shuhei Miwa, Akira Hasegawa, Tomitsugu Taguchi, Naoki Igawa, Katsunori Abe “Cavity Formation in a SiC/SiC Composite under Simultaneous Irradiation of Hydrogen, Helium and Silicon Ions”, Materials Transactions, Vol. 46, No. 3 (2005) pp. 536 to 542
    [54] T. Taguchi, “Effect of displacement damage up to 50 dpa on microstructural development in SiC/SiC composite”, Journal of Nuclear Materials 367–370 (2007) 698–702
    [55] H. Kishimoto, “Microstructural stability of SiC and SiC/SiC composites under high temperature irradiation environment”, Journal of Nuclear Materials 307–311 (2002) 1130–1134
    [56] T.S.Duh, “Study of helium bubble formation in SiCf/PyC/β-SiC composites by dual-beam irradiation”, Journal of Nuclear Materials 329–333 (2004) 518–523
    [57] H.T.Keng, “Cavity formation in Tyranno-SA SiCf/SiC composite irradiated with multiple-ion beam at elevated temperatures”, Journal of Nuclear Materials 367–370 (2007) 753–757
    [58] P. Jung, “A comparison of defects in helium implanted α-and β-SiC”, Journal of Nuclear Materials, 283–287 (2000) 806–810
    [59] Peter Jung, “Effect of helium on radiation damage in a SiC/C composite”, Ceramics International, 26 (2000) 513–516
    [60] A. Nagasawa, “Helium-bubble formation behavior of SiCf/SiC composites after helium implantation”, Journal of Nuclear Materials 264 (1999) 355–358
    [61] J.F. Ziegler, J.P. Biersack, and U. Littmark, “Stopping and Range of Ions in Solids” , Pergamon Press, New York, 1985, Vol. 1
    [62] Donald R. Olander, “Fundamental aspects of nuclear reactor fuel elements”, 1976.
    [63] M.E. Sawan, N.M. Ghoniem, L. Snead, Y. Katoh “Damage production and accumulation in SiC structures in inertial and magnetic fusion systems” Journal of Nuclear Materials 417 (2011) 445–450
    [64] L.L. Snead, R.H. Jones, A. Kohyama, P. Fenici “Status of silicon carbide composites for fusion” Journal of Nuclear Materials. 233-237 (1996) 26-36.
    [65] L. El-Guebaly, ARIES II/IV Report, to be published
    [66] 科儀叢書3, 材料電子顯微鏡學, 國科會精儀中心
    [67] 汪建民, 杜正恭, 材料分析 中國材料科學學會 1998.
    [68] R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, 1996
    [69] H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicroscopy, 19, pp. 121, 1986
    [70] F. Hofer and P. Warbichler, Ultramicroscopy, 63, pp. 21,1996
    [71] N. Bonnet, C. Coliex, C. Mory and M. Tence, “Scanning Microscopy 2(Suppl.)” , 351, 1988
    [72] A. Berger, J. Mayer and H. Kohl, Ultramicroscopy, 55, pp. 101,1994
    [73] P. A. Crozier and R. F. Egerton, Ultramicroscopy, 27, pp. 9, 1988
    [74] D. B. Williams and C. B. Carter, Transmission Electron Microscopy, Plenum Press. New York & London, 1996
    [75] T. Malis, S. Cheng and R. F. Egerton, J. Electron. Microsc. Tech., 8, pp. 8471, 1988
    [76] T. jacka Bus, Properties of Silicon Carbide, 2001.
    [77] Y. Katoh, N. Hashimoto, S. Kondo, L.L. Snead, A. Kohyama, “Microstructural development in cubic silicon carbide during irradiation at elevated temperatures”, Journal of Nuclear Materials 351 (2006) 228-240.
    [78] S. Kondo, Y. Katoh, L.L. Snead, “Microstructural defects in SiC neutron irradiated at very high temperatures”, Journal of Nuclear Materials 382 (2008) 160–169.
    [79] S. Kondo, Y. Katoh, L.L. Snead, “Cavity swelling and dislocation evolution in Si Car very high temperatures”, Journal of Nuclear Materials 386-388 (2009) 222-226.
    [80] 耿緒祖,「應用於核融合反應爐壁之Tyranno-SA纖維/碳化矽複合材料輻射效應之研究」國立清華大學工程與系統科學研究所碩士論文,2005
    [81] H.L. Heinisch, L.R. Greenwood, W.J. Weber, R.E. Williford, “Displacement damage in silicon carbide irradiated in fission reactors” Journal of Nuclear Materials 327 (2004) 175-181.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE