簡易檢索 / 詳目顯示

研究生: 薛祥明
Hsiang-Ming Hsueh
論文名稱: 奈米碳管/奈米碳纖維之批量製程探討與其應用於鋰離子二次電池負極材料之研究
Investigation into the Mass Production of CNTs/CNFs in Laboratory Scale and CNTs/CNFs on the application of Li-ion secondary Battery Anode
指導教授: 戴念華
Nyan-Hwa Tai
李紫原
Chi-Yuan Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 131
中文關鍵詞: 奈米碳管
外文關鍵詞: MWNT
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究可概略分為兩大部分,其一為批次生產奈米碳管/奈米碳纖的之製程研究;其二為奈米碳管/奈米碳纖用於在鋰離子二次電池陽極材料之性質研究。
    在第一個部分中,我們發現與氬氣相較,在氫氣氣氛下可生成出較高品質之奈米碳管,故本實驗均以氫氣為反應氣氛。研究發現,不同的前驅物會因為本身的鍵結結構、碳氫原子比以及蒸汽壓的大小造成不同的碳管形貌。至於反應壓力及溫度的提高都會改變碳管的徑向成長速率。另外,從動力學的角度著眼,輔以碰撞理論及相圖等資料,本研究闡明奈米碳管及奈米碳纖在動力學上的確是藉由不同之機制所生成。

    兼具高石墨化程度以及高比表面積是奈米碳管的特性。因此,本研究探討自製的奈米碳管是否同時具有石墨的高可逆性以及硬碳的高電容量,因而在第二部分中,藉由多種奈米碳管/奈米碳纖陽極材料的塗布,研究其充放電特性以及在不同充放電速率下的比較,以瞭解鋰離子在奈米碳管中的吸藏行為。


    This thesis involves two primary subjects, the first subject is to investigate the mass-production of CNTs/CNFs in laboratory scale. The other subject is to study the electrochemical properties of the as-synthesized CNTs/CNTs for the application in secondary lithium-ion
    battery.

    In the first subject, it is found that hydrogen shows better performance than argon in the CVD process for synthesizing CNTs. Thus, all the experiments in the work proceeded in hydrogen atmosphere. Different precursors might cause morphological variation due to difference in C-C bonding, H/C ratio, and precursor vapor pressure. Besides, both reaction pressure and temperature changed the radial growing rate. Furthermore, this study clarified that the growth of CNTs and CNFs followed different mechanisms by referring collision theory

    and phase diagram.

    The main features of CNTs contain highly-perfect graphitization structure and high specific surface area. Thus, it is expected the CNT anode performed high reversibility as graphite anode and high capacity as hard carbon anode. In the second parts of the study, the electrochemical properties of different CNT/CNF anodes were measured, and the

    intercalation mechanisms were discussed.

    摘要...........................................................................................................i Abstract……….………………………………………………………..ii 誌謝…………………………………………………………………….iii Contents………………………………………………………………..vi Diagram Contents……………………………………………………..ix 1. Introduction and literature reviews 1.1 Brief experimental introduction………………………….....1 1.2 Mass production of CNTs…………………………………...2 1.3 VLS-growth of carbon nanotubes from the vapor………...7 1.4 Introduction of Li-ion batteries…………………………......9 1.5 The development of carbon materials for the anode..….....12 1.6 CNT-based anode in Li-ion batteries………………............16 2. Experimental apparatuses and characterization 2.1 Thermal CVD………………………………………………...21 2.2 Graphitization oven………………………………………….21 2.3 TEM/HRTEM…………...…………………………………...22 2.4 FESEM………………………………………………………..23 2.5 XRD…………………………………………………………...23 2.6 Charge-discharge apparatus………………………………...25 2.7 CV……………………………………………………………..25 2.8 BET……………………………………………………………26 2.9 Raman spectrum……………………………………………...26 3. Experimental details 3.1 Batch production of MWNTs………………………………..32 3.1.1 Buffer gas………………………………………………....33 3.1.2 Precursor…………………………………………………33 3.1.3 Reaction temperature……………………………………34 3.1.4 Reaction pressure…………………...................................35 3.2 lithium ion battery tests……………………………………...35 3.2.1 Various MWNT/VGCF electrodes……………………...36 3.2.2 MWNT electrodes at different charge/ discharge rates…………………………………………..37 4. Results and discussion 4.1 Batch production of MWNTs 4.1.1 Buffer gas effects…………………………………………40 4.1.2 Precursor effects…………………………………............41 4.1.3 Reaction temperature effects……………………............46 4.1.4 Reaction pressure effects…………………………...........50 4.2 Lithium ion battery tests 4.2.1 Results of electrochemical tests and discussion for various MWNT/VGCF electrodes…………...…………51 4.2.2 Results of electrochemical tests and discussion for MWNT electrodes at different charge /discharge rates…..……………………………………...57 5. Conclusions…………………………………………………..........123 6. References…………………………………………………………126

    1. Ijima S, HELICAL MICROTUBULES OF GRAPHITIC CARBON, Nature, 354 (6348): 56-58 (1991)
    2. AJAYAN PM, IIJIMA S, SMALLEST CARBON NANOTUBE, NATURE 358 (6381): 23-23 JUL 2 1992.
    3. Ando, Yoshinori; Zhao, Xinluo; Inoue, Sakae; Iijima, Sumio, Mass production of multiwalled carbon nanotubes by hydrogen arc discharge, JOURNAL OF CRYSTAL GROWTH 237-239 (2002) 1926-1930.
    4. Yudasaka M, Komatsu T, Ichihashi T, Iijima S, Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal, CHEMICAL PHYSICS LETTERS 278 (1-3): 102-106 OCT 24 1997.
    5. Yudasaka M, Ichihashi T, Komatsu T, Iijima S, Single-wall carbon nanotubes formed by a single laser-beam pulse, CHEMICAL PHYSICS LETTERS 299 (1): 91-96 JAN 1 1999.
    6. Shoushan Fan, Michael G. Chapline, Nathan R. Franklin, Thomas W. Tombler, Alan M. Cassell, Hongjie Dai, Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties, SCIENCE VOL 283: 512-514 1999 JAN 23.
    7. Lee CJ, Kim DW, Lee TJ, Choi YC, Park YS, Kim WS, Lee YH, Choi WB, Lee NS, Kim JM, Choi YG, Yu SC, Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition, APPLIED PHYSICS LETTERS VOL 75 (12) 1721-1723 (1999).
    8. C. H. Olk and J. P. Heremans, Scanning tunneling spectroscopy of carbon nanotubes, J. Mater. Res. 9, p259, 1994.
    9. Shoushan Fan, Michael G. Chapline, Nathan R. Franklin, Thomas W. Tombler, Alan M. Cassell, and Hongjie Dai, Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties, SCIENCE, 283, p512-514, 1999.
    10. N. M. Rodriguez, A REVIEW OF CATALYTICALLY GROWN CARBON NANOFIBERS, J. Mater. Res. 8 (1993) 3233.
    11. Dai, Hongjie; Rinzler, Andrew G.; Nikolaev, Pasha; Thess, Andreas; Colbert, Daniel T.; Smalley, Richard E, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett. 260 (1996) 471.
    12. Sen, Rahul; Govindaraj, A.; Rao, C.N.R., Carbon nanotubes by the metallocene route, Chem. Phys. Lett. 267 (1997) 276-280.
    13. N. M. Rodriguez, A REVIEW OF CATALYTICALLY GROWN CARBON NANOFIBERS, J. Mater. Res. 8 (1993) 3233.
    14. Ci, Lijie; Li, Yanhui; Wei, Bingqing; Liang, Ji; Xu, Cailu; Wu, Dehai, Preparation of carbon nanofibers by the floating catalyst method, carbon 38, p.1933, 2000.
    15. Andrews, R.; Jacques, D.; Rao, A.M.; Derbyshire, F.; Qian, D.; Fan, X.; Dickey, E.C.; Chen, J, Continuous production of aligned carbon nanotubes: a step closer to commercial realization, CHEMICAL PHYSICS LETTERS 303, p.467, 1999.
    16. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, and M. S. Dresselhaus, Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, APPLIED PHYSICS LETTERS 72, 25, p.3282, 1998.
    17. Nikolaev, Pavel; Bronikowski, Michael J.; Bradley, R. Kelley; Rohmund, Frank; Colbert, Daniel T, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, CHEMICAL PHYSICS LETTERS 313, p.91, 1999.
    18. Kukovitsky EF, L'vov SG, Sainov NA, VLS-growth of carbon nanotubes from the vapor, CHEMICAL PHYSICS LETTERS 317, p.65, 2000.
    19. R. S. Wagner et al., APPLIED PHYSICS LETTERS, 4, p.89, 1964.
    20. G. G. Tibbets, CARBON 32, p.569, 1994.
    21. L. Fischer et al., Z. Electrochem. 62, 1958.
    22. Vincent, Colin A., Lithium batteries: a 50-year perspective, 1959–2009, Solid state Ionics 134, p.159-167, 2000.
    23. J. R. Dahn et al., Lithium batteries, Elsevier, Amsterdam, p.1, 1994.
    24. N. Imanishi et al., Lithium Ion batteries, Wiley-VCH / Kodansha, Weinheim, p.98, 1998.
    25. M. Winter et al., Handbook of Battery Materials, Wiley-VCH, Weinheim, p.127, 1999.
    26. M. Winter et al., Handbook of Battery Materials, Wiley-VCH, Weinheim, p.383, 1999.
    27. Oberlin A. In: Thrower PA, editor, Chemistry and physics of carbon,
    Vol. 22, New York: Marcel Dekker, Inc, p.1, 1989.
    28. N. Imanishi, H. Kashiwagi, T. Ichikawa, Y. Takeda, O. Yamamoto, M. Inagaki, Charge-Discharge Characteristics of Mesophase-Pitch-Based Carbon Fibers for Lithium Cells, J Electrochem Soc. 140, p.315, 1993
    29. Dresselhasu et al., In: Cardona Manual, editor, Graphite fibers and filaments, New York: Springer-Verlag, 1988.
    30. Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K, Recent development of carbon materials for Li ion batteries, Carbon 38, p.183, 2000.
    31. SATO K, NOGUCHI M, DEMACHI A, NOGUCHI M, DEMACHI A, A MECHANISM OF LITHIUM STORAGE IN DISORDERED CARBONS, Science 264, p.556, 1994.
    32. J. R. Dahn , Tao Zheng, Yinghu Liu, J. S. Xue, Mechanisms for Lithium Insertion in Carbonaceous Materials, Science 270, p.590, 1995.
    33. Mabuchi A et al., J Electrochem Soc 142, p.556, 1994.
    34. J. R. Dahn , Tao Zheng, Yinghu Liu, J. S. Xue, Mechanisms for Lithium Insertion in Carbonaceous Materials, Science 270, p.590, 1995.
    35. Flandrois, S.; Simon, B., Flandrois S, Carbon materials for lithium-ion rechargeable batteries, Carbon 37, p.165, 1999.
    36. A. Funabiki, M. Inaba, Z. Ogumi, S. i. Yuasa, J. Otsuji, A. Tasaka, Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder, J Electrochem Soc 145, p.172, 1998.
    37. Yoshino A et al., Tanso 186, p.45, in Japan, 1999.
    38. Endo M, Nishimura Y, Takahashi T, Takeuchi K, Dresselhaus MS, Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery, J Phys Chem Solids 57, p.725, 1996.
    39. K. Tatsumi, K. Zaghib, Y. Sawada, H. Abe, T. Ohsaki, Anode Performance of Vapor-Grown Carbon Fibers in Secondary Lithium-Ion Batteries, J Electrochem Soc 142, p.1090, 1995.
    40. B. M. Way, J. R. Dahn, The Effect of Boron Substitution in Carbon on the Intercalation of Lithium in Lix(BzC1-z)6, J Electrochem Soc 141, p.907, 1994.
    41. Nakajima, Tsuyoshi; Koh, Meiten; Takashima, Masayuki, Electrochemical behavior of carbon alloy CxN prepared by CVD using a nickel catalyst, Electrochimica Acta, p.883, 1998.
    42. Endo M, Kim C, Karaki T, Phy Rev B 58, p.883, 1998.
    43. Hagio T., Carbon 27, p.259, 1989.
    44. Wu, Y.P.; Rahm, E.; Holze, R., Carbon anode materials for lithium ion batteries, Journal of Power Sources 114, p.228, 2003.
    45. Yang, Zhan-hong; Wu, Hao-qing, Electrochemical intercalation of lithium into carbon nanotubes, Solid state Ionics 143, p.173, 2001.
    46. Yang, Zhan-hong; Wu, Hao-qing, Electrochemical intercalation of lithium into raw carbon nanotubes, Materials Chemistry and Physics 71, p.7, 2001.
    47. Gao, B.; Kleinhammes, A.; Tang, X.P.; Bower, C.; Fleming, L.; Wu, Y.; Zhou, O., Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chemical Physics Letters 307, p.153, 1999.
    48. Maurin, G.; Bousquet, Ch.; Henn, F.; Bernier, P.; Almairac, R.; Simon, B., Electrochemical intercalation of lithium into multiwall carbon nanotubes, Chemical Physics Letters 312, p.14, 1999.
    49. Matsumura, Y.; Wang, S.; Mondori, J., Interactions between disordered carbon and lithium in lithium ion rechargeable batteries, Carbon 33, p.1457, 1995.
    50. Maurin, G.; Bousquet, Ch.; Henn, F.; Bernier, P.; Almairac, R.; Simon, B., Electrochemical intercalation of lithium into multiwall carbon nanotubes, Chemical Physics Letters 312, p.14, 1999.
    51. Gao, B.; Kleinhammes, A.; Tang, X.P.; Bower, C.; Fleming, L.; Wu, Y.; Zhou, O., Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chemical Physics Letters 307, p.153, 1999.
    52. F. Disma, L. Aymard, L. Dupont, J. M. Tarascon, Effect of Mechanical Grinding on the Lithium Intercalation Process in Graphites and Soft Carbons, J. Electrochem. Soc. 143, p.3959, 1996.
    53. Leroux, F; Gautier, S.; Frackowiak, E.; Bonnamy,, Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes, Journal of Power Sources 81-82, p.317, 1999.
    54. G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, Structure and Lithium Insertion Properties of Carbon Nanotubes, Journal of the Electrochemical Society 146 (5), p.1696, 1999.
    55. Frackowiak, E.; Gautier, S.; Gaucher, H.; Bonnamy, S.; Beguin, F., Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon 37, p.61, 1999.
    56. Mordkovich, V.Z.; Baxendale, M.; Yoshimura, S.; R., P.H.C., Intercalation into carbon nanotubes, Carbon 34, p.1301, 1996.
    57. Shin, Heon-Cheol; Liu, Meilin; Sadanadan, B.; Rao, Apparao M., Electrochemical insertion of lithium into multi-walled carbon nanotubes prepared by catalytic decomposition, Journal of Power Sources 112, p.216, 2002
    58. Weinheim et al., Handbook of Battery Materials, Wiley-VCH, p.389
    59. Doron Aurbach and Yair Ein-Eli, The study of Li-Graphite
    Intercalation Processes in Several Electrolyte Systems using In Situ
    X-Ray Diffraction, J. Electrochem. Soc; 142(6):1746-1752.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE