簡易檢索 / 詳目顯示

研究生: 蔡孟樵
Meng-Chiao Tsai
論文名稱: 光電反饋式渾沌通訊於光纖微波系統應用之研究
Chaotic Communication in Radio-over-Fiber System Based on Optoelectronic Feedback Semiconductor Laser
指導教授: 林凡異
Fan-Yi Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 73
中文關鍵詞: 光電反饋渾沌光纖通訊無線通訊
外文關鍵詞: optoelectronic feedback, chaos, fiber, wireless
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,渾沌通訊 (chaotic communication) 被論證可以應用在 Radio-over-Fiber (RoF) 系統中。此無線通訊系統擁有許多優點,如更有效的利用頻寬,高傳輸速率,長距離傳輸,以及保密性。渾沌通訊是利用兩個同步化 (synchronization) 的半導體雷射所完成。而渾沌載波 (chaotic carrier) 可經由半導體雷射利用光電回饋 (optoelectronic feedback) 的機制而產生。經由不同的加密方式,如 ACM (Additive Chaotic Modulation) 和 OOSK (On-Off Shift Keying),可以達到保密通訊的效果。
    本論文研究了渾沌通訊在不同系統下的效能,例如 back-to-back 系統、光纖傳輸系統,以及無線傳輸頻道。在光纖系統中,我們考慮了衰減、非線性 (nonlinearity)、色散 (dispersion)、ASE (Amplifier Spontaneous Emission) 雜訊等影響。其中我們計算系統的誤碼率 (bit error rate) 來量化其通訊品質。在無線頻道裡,則考慮路徑衰減、白色高斯雜訊 (additive white Gaussian noise),以及多重路徑等現象。之後更進一步把光線傳輸及無線頻道的現象一起考慮,來完成對 RoF 系統之整體研究。
    利用半導體雷射的光電回饋機制驗證了渾沌通訊可應用在 RoF 系統中,其傳輸速率可到達每秒109位元。其中, OOSK 之編碼方式比較適合應用在 RoF 系統裡,並且可以達到超過100公里的遠距離傳輸,而ACM則是在光纖系統裡擁有比較好的效能。


    Chaotic communication in Radio-over-Fiber (RoF) system has been demonstrated and numerically investigated. The advantages of this system include efficient use of bandwidth, high-bit rate, long-distance transmission, and security of the wireless communications. The implementation of this chaotic communication system is based on the synchronization two identical lasers, where chaotic carrier is generated with an optoelectronic feedback (OEF) scheme. With different message encoding schemes, including the additive chaotic modulation (ACM) and the on-off shift keying (OOSK), the secured communication in RoF system can be achieved.
    The performance of chaotic communication system in back-to-back configuration, fiber channel, and radio channel has been investigated respectively. In fiber transmission module, influences of fiber attenuation, nonlinearity, dispersion, and amplifier spontaneous emission (ASE) noise have been taken into accounts. The system bit-error-rate (BER) for different fiber transmission distances and message bit rate is calculated. The effects of the radio channel including path loss, additive white Gaussian noise (AWGN), and multipath are considered. Moreover, the RoF system is achieved after combing the fiber channel with the
    radio channel.
    Chaotic communication in RoF system at a bit rate of Gbit/s level is investigated numerically using optoelectronic feedback semiconductor lasers. The OOSK scheme is shown to be more suitable for the RoF system, which it can provide long-distance transmission to above 100 km. On the other hand, the ACM scheme only shows moderate performance in the fiber transmission.

    1. Introduction 1.1 Introduction 1.2 Background 2. Optical chaotic communication based on optoelectronic feedback semiconductor laser 2.1 Introduction 2.2 Nonlinear dynamics of semiconductor laser 2.3 Chaos synchronization 2.4 Encoding/decoding schemes in chaotic communication 2.5 Eye diagram, Q-factor, and BER for communication system 2.6 Security of chaotic communication 2.7 Parameter mismatch 2.8 Conclusion 3. Chaotic communication in fiber transmission module 3.1 Introduction 3.2 Nonlinear Schrodinger equation 3.2.1 Split-step Fourier method (SSFM) 3.2.2 Nonlinearity effect 3.2.3 Dispersion effect 3.2.4 Chaos synchronized after propagating through fiber 3.3 Amplifier spontaneous emission (ASE) noise 3.4 Comparison of the different encoding schemes in fiber transmission 3.5 Conclusion 4. Radio-over-Fiber system 4.1 Introduction 4.2 Wireless channel 4.2.1 Path loss 4.2.2 Additive white Gaussian noise 4.2.3 Multipath 4.3 Comparison of the different encoding schemes in Radio-over-Fiber system 4.4 Conclusion 5. Conclusion

    K. Siwiak, "Ultra-Wide Band Radio: Introducing a New Technology", IEEE Vehicular Tech. Conference (VTC)- Plenary session} 2001.

    M. Y. W. Chia and M. L. Yee, "Wireless ultra wideband communications using radio over fiber ," IEEE Conference on Ultra Wideband Systems and Technologies, 16-19, pp. 265-269, 2003.

    M. Y. W. Chia, B. Luo, M. L. Yee, and E. J. Z. Hao, "Radio over multimode fibre transmission for wireless LAN using VCSELs" IEEE Electronics Letters, vol. 39, pp. 1143-1144, 2003.

    F. Zeng and J. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber,"
    IEEE Photonics Technology Letters, vol. 18, pp. 823-825, 2006.

    K. Kitayama, "Architectural considerations of fiber-radio millimeter-wave wireless access systems,"
    J. Fiber Integr, vol. 19, pp. 167-185, 2000.

    R. Heidemann and G. Veith, "mm-wave photonics technologies for Gb/s-wireless-local-loop,"
    OECC'98, pp. 306-307, 1998.

    Y. L. Guennec, G. Maury, J. Yao, and B. Cabon, "New optical microwave up-conversion
    solution in radio-over-fiber networks for 60-GHz wireless applications,"
    J. Lightwave Technol., vol. 24, pp. 1277-1282, 2006.

    C. M. Tan, L. C. Ong, M. L. Yee, B. Luo, and P. K. Tang, "Direct transmission of ultra wide band
    signals using single mode Radio-over-Fiber system," APMC 2005, 2005.

    F. Zang and P. L. Chu, "Effect of transmission fiber on chaos communication system based on erbium-doped fiber ring laser,"
    J. Lightwave Technol., vol. 21, pp. 3334-3343, 2003.

    A. S. D\'{i}az, C. R. Mirasso, P. Colet, and P. G. Fern\'{a}ndez, "Encoded Gbit/s digital communications with
    synchronized chaotic semiconductor lasers," IEEE Journal of Quantum Electronics
    vol. 35, no. 3, pp. 292-297, 1999.

    J. Ohtsubo, "Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,"
    IEEE Journal of Quantum Electronics, vol. 38, no. 9, pp. 1141-1154, 2002.

    D. Kanakidis, A. Argyris, and D. Syvridis, "Performance characterization of high-bit-rate optical
    chaotic communication systems in a back-to-back- configuration," J. Lightwave Technol. vol. 21, no. 3,
    pp. 750-758, 2003.

    D. Kanakidis, A. Bogris, A. Argyris, and D. Syvridis,
    "Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes,"
    J. Lightwave Technol., vol. 22, pp. 2256-2263, 2004.

    J. M. Liu, H. F. Chen, and S. Tang, "Synchronized chaotic optical communications at high bit rates,"
    IEEE J. Quantum Electron., vol. 38, pp.1184-1196, 2002.

    X. Li, W. Pan, D. Ma, and B. Luo, "Chaos synchronization of unidirectionally injected vertical-cavity
    surface-emitting lasers with global and mode-selective coupling," Optics Express, vol. 14, no. 8, 2006

    Y. Liu, H. F. Chen, J. M. Liu, P. Davis, and T. Aida, "Communication using synchronization of optical-feedback-induced
    chaos in semiconductor lasers," IEEE Trans. Circuits Syst. I, vol. 48, pp. 1484-1490, 2001.

    T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing,
    "Period-doubling cascades and chaos in a semiconductor laser with optical injection,"
    Phys. Rev. A, vol. 51, pp. 4181-4185, 1995.

    J. Mork, B. Tromborg, and J. Mark, "Chaos in semiconductor lasers with optical feedback:
    theory and experiment, " IEEE J. Quantum Electron, vol. 28, pp.93-108, 1992.

    N. Gastaud, S. Poinsot, L. Larger, J.-M. Merolla, M. Hanna, J.-P. Goedgebuer and F. Malassenet,
    "Electro-optical chaos for multi-10 Gbit/s optical transmissions" Electronics Letters., vol. 40, 2004

    F. Y. Lin and J. M. Liu, "Nonlinear dynamics of a semiconductor laser
    with delayed negative optoelectronic feedback," IEEE J. Quantum Electron, vol. 39, pp.562-568, 2003.

    K. J. Vahala and M. A. Newkirk, "Parasitic-free modulation semiconductor lasers,"
    IEEE J. Quantum Electron., vol. 25, pp. 1393-1398, 1989.

    J. M. Liu and T. B. Simpson, "Characterization of fundamental parameters of a semiconductor laser with
    an injected optical probe," IEEE Photon. Technol. Lett., vol. 4, pp. 380-382, 1993.

    S. Tang and J. M. Liu, "Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with
    delayed opto-electronic feedback," IEEE J. Quantum Electron., vol. 37, pp. 329-336, 2001.

    F. Y. Lin and J. M. Liu, "Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,"
    IEEE J. Quantum Electron, vol. 39, pp. 562-568, 2003.

    H. D. I. Abarbanel and M. B. Kennel, "Synchronizing high-dimensional chaotic optical ring dynamics,"
    Phys. Rev. Lett., vol. 80, no. 14, pp. 3153-3156, 1998.

    A. Uchida, R. McAllister, R. Meucci, and R. Roy,
    "Generalized synchronization of chaos in identical systems with hidden degrees of freedom,"
    Phys. Rev. Lett., vol. 91, 2003.

    A. Locquet, C. Masoller, and C. R. Mirasso,
    "Synchronization regimes of optical-feedback-induced chaos in unidirectionally coupled semiconductor lasers,"
    Phys. Rev. E, vol. 65, 2002.

    S. Tang and J. M. Liu, "Chaos synchronization in semiconductor lasers with optoelectronic feedback,"
    IEEE J. Quantum Electron, vol. 39, pp. 708-715, 2003.

    H. D. I. Abarbanel, M. B. Kennel, L. Illing, S. Tang, H. F. Chen, and J. M. Liu,
    "Synchronization and communication using semiconductor lasers with optoelectronic feedback,"
    IEEE J. Quantum Electron, vol. 37, pp. 1301-1311, 2001.

    P. Colet and R. Roy, "Digital communication with synchronized chaotic lasers,"
    Opt. Lett., vol. 19, pp. 2056-2058, 1994.

    K. S. Halle, C. W. Wu, M. Itoh, and L. O. Chua,
    "Spread spectrum communication through modulation of chaos,"
    Int. J. Bifur. Chaos, vol. 3, pp. 469-477, 1993.

    L. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz,
    "Experimental demonstration of secure communication via chaotic synchronization,"
    Int. J. Bifur. Chaos, vol. 2, pp. 709-713, 1992.

    U. Parlitz, L. O. Chua, L. Kocarev, K. S. Halle, and A. Shang,
    "Transmission of digital signals by chaotic synchronization,"
    Int. J. Bifur. Chaos, vol. 2, pp. 973-977, 1992.

    T. Heil, J. Mulet, I. Fischer, C. R. Mirasso, M. Peil, P. Colet, and W. Elsasser,
    "On/off phase shift-keying for chaos-encrypted com-munication using external-cavity semiconductor lasers,"
    IEEE J. Quantum Electron, vol. 38, pp.1162-1170, 2002.

    H. D. I. Abarbanel and M. B. Kennel,
    "Synchronizing high-dimensional chaotic optical ring dynamics,"
    Phys. Rev. Lett., vol. 80, no. 14, pp. 3153-3156, 1998.

    A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet,
    I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K.
    A. Shore, "Chaos-based communications at high bit rates using
    commercial fibre-optic links," Nature, 2005.

    G. P. Agrawal, Nonlinear Fiber Optics. San Diego, CA: Academic,
    2001.

    S. Z. Pilinsky and Z. Sipus, "Modeling of optical link using
    finite-difference method," ConTEL, pp. 383-388, 2003.

    V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk,
    "Optimization of the split-step Fourier method in modeling
    optical-fiber communication systems," J. Lightwave
    Technol., vol. 21, pp. 61-68, 2003.

    A. A. Rieznik, T. Tolisano, F. A. Callegari, D. F. Grosz, and H.
    L. Fragnito, "Uncertainty relation for the optimization of
    optical-fiber transmission systems simulations," Optics
    Express, vol. 13, pp. 3822-3834, 2005.

    E. P. Ippen and R. H. Stolen, "Stimulated Brillouin scattering in
    optical fiber," Appl. Phys. Lett., vol. 21, pp. 539-541,
    1972.

    R. H. Stolen, E. P. Ippen, and A. R. Tynes, "Raman oscillation in
    glass optical waveguide," Appl. Phys. Lett., vol. 20, pp.
    62, 1972.

    K. O. Hill et al., "CW three-wave mixing in single-mode optical
    fibers," J. Appl. Phys., vol. 49, pp. 5098, 1978.

    R. H. Stolen and C. Lin, "Self-phase-modulation in silica optical
    fibers," Phys. Rev. A, vol. 17, pp. 1448-1453, 1978.

    A. R. Chraplyvy, D. Marcuse, and P. S. Henry, "Carrier-induced
    phase noise in angle-modulated optical-fiber systems," J.
    Lightwave Technol., vol. 2, pp. 6, 1984.

    J. Daly, "Fiber optic intermodulation distortion," IEEE
    Transactions on Communications, vol. 30, pp. 1954-1958, 1982.

    S. Watanabe, T. Naito, and T. Chikama, "Compensation of chromatic
    dispersion in a single-mode fiber byoptical phase conjugation,"
    IEEE Photon. Technol. Lett., vol. 5, pp. 92-95, 1993.

    U. Gliese, S. Norskov, and T.N. Nielsen, "Chromatic dispersion in
    fiber-optic microwave and millimeter-wavelinks," IEEE
    Transactions onMicrowave Theory and Technol., vol. 44, pp.
    1716-1724, 1996.

    D. Marcuse, "Single-channel operation in very long nonlinear
    fibers with optical amplifiers at zero dispersion," J.
    Lightwave Technol., vol. 9, pp. 356-361, 1991.

    FCC Document 00-163: Revision of Part 15 of the Commission's Rules
    Regarding Ultra-Wideband Transmission Systems, ET Docket No.
    98-153, 2002.

    K. Lee, "Radio over Fiber for Beyond 3G, " Microwave Photonics,
    pp. 9-10, 2005.

    Y. L. Guennec, G. Maury, J. Yao, and B. Cabon, "New optical
    microwave up-conversion solution in radio-over-fiber networks for
    60-GHz wireless applications," J. Lightwave Technol., vol.
    24, pp. 1277-1282, 2006.

    H. Hashcmi, "The indoor radio propagation channel," Proc
    IEEE, vol. 81, 1993.

    D. Molkdar, "Review on radio propagation into and within
    buildings," IEE Proc, vol. 138, pp. 61-73, 1991.

    T. S. Rappaport, "Characterization of UHF multipath radio channels
    in factory buildings," IEEE Trans. Anten. and Propagat. vol. 37,
    pp. 1058-1069, 1989.

    K. Y. Yazdandoost and R. Kohno, "The ultra-wideband signal
    propagation," IEEE Trans. Circuits Syst., vol. 2, pp.
    645-648, 2004.

    R. J. Punnoose, P. V. Nikitin, and D. D. Stancil, "Efficient
    simulation of Ricean fading within a packet simulator," IEEE
    Vehicular Tech. Conference , 2000.

    T. S. Rappaport, Wireless Communications, Principles and Practice,
    Prentice Hall, New Jersey, 1996.

    S. Sato and T. Kobayashi, "Path-loss exponents of ultra wideband
    signals in line-of-sight environments," IEEE Spread Spectrum
    Techniques and Applications, pp. 488-492, 2004.

    S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and
    V. Tarokh, "UWB indoor path loss model for residential and
    commercial buildings," IEEE Vehicular Tech. Conference,
    vol. 5, pp. 3115-3119, 2003.

    J. E. Berg, "A recursive method for street microcell path loss
    calculations," IEEE International Symposium on Personal,
    Indoor and Mobile Radio Communications, vol. 1, pp. 140-143,
    1995.

    M. Bystrom and J. W. Modestino, "Combined source-channel coding for transmission of video over aslow-fading Rician
    channel," ICIP 98, vol. 2, pp. 147-151, 1998.

    W. C. Y Lee, "Estimate of channel capacity in Rayleigh fading
    environment," IEEE Vehicular Tech. Conference, vol. 39,
    pp. 187-189, 1990.

    L. Wei, and C. Schlegel, "Synchronization requirements for multi-user
    OFDM on satellitemobile and two-path Rayleigh fading channels,"
    vol. 43, pp. 887-895, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE