簡易檢索 / 詳目顯示

研究生: 陳星佑
Hsing-Yu Chen
論文名稱: 溫度與保壓時間效應對奈米級金屬壓印成形性之影響 — 分子動力學模擬與奈米壓印實驗
Temperature and Pressure Holding Time Effect on Formation of Metallic Patterns by Nanoimprint Technology — Molecular Dynamics Simulation and Nanoimprint Experiment
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 132
中文關鍵詞: 分子動力學奈米壓印溫度保壓時間金屬成形
外文關鍵詞: Molecular Dynamics, Nanoimprint, Temperature, Pressure Holding Time, Metal, Formation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用奈米壓印的方式,將金薄膜成形為奈米級結構,並探討不同溫度與保壓時間等製程參數對結構成形的影響;本論文主要分成兩個部分,第一部分是電腦模擬部分,利用分子動力學模擬的方式,改變模擬時的溫度與保壓時間,觀察奈米壓印過程的情形,其結果與趨勢可做為奈米壓印實驗的參考;第二部分是奈米壓印實驗部分,本研究利用矽模具與金薄膜進行奈米壓印實驗,設計不同的溫度與保壓時間參數,期望可以找出最佳的奈米壓印實驗環境。
    由分子動力學模擬與奈米壓印實驗的結果,我們可以發現當溫度愈高或是保壓時間愈長時,成形結構會有較寬及較深的情形,若是希望奈米壓印實驗結果和模具形狀在尺寸上較為相似,則實驗環境需調整為溫度1000C及保壓時間4分鐘。


    This thesis presents a theoretical and experimental study on the formation of nano-scale patterns on gold thin film by using nanoimprint technique. The aim is to study the effect of different manufacturing environments, temperature and pressure holding time, on the formation of metal patterns. This thesis is mainly divided into two parts. The first part employs molecular dynamics simulation method for the theoretical study to observe the nanoimprint process by changing its simulation temperature and holding time. The simulation results can not only be used for examining the mechanics in the forming process but also be taken as a reference of nanoimprint experiment. The second part is nanoimprint experiment. This research uses silicon mold and gold thin film to conduct the experiment. Different parameters, temperature and holding time, are designed to find the optimum experimental environment for nanoimprint process.
    From the results of molecular dynamics simulation and nanoimprint experiment, one can find that if the temperature is higher or the holding time is longer, the pattern formation will be wider or deeper. The results illustrate that the experimental environment can be assigned to be 1000C in temperature and 4 minutes in holding time in order to obtain good quality of pattern transfer of the mold.

    目錄 中文摘要.....................................................................................................I 英文摘要...................................................................................................II 誌謝..........................................................................................................III 目錄..........................................................................................................IV 圖目錄...................................................................................................VIII 表目錄...................................................................................................XIII 第一章 緒論................................................................................1 1.1 研究動機.............................................................................................1 1.2 文獻回顧.............................................................................................3 1.2.1 奈米壓印......................................................................................3 (1) 奈米壓印 (nanoimprint lithography) .........................................3 (2) 滾輪式壓印 (roller nanoimprint lithography)............................4 (3) 步進光感成形式奈米壓印 (step and flash imprint lithography) ................................................................................6 (4) 雷射成形式直接奈米壓印 (laser assisted direct imprint).......................................................................................7 1.2.2 分子動力學..................................................................................7 1.3 論文內容.............................................................................................9 第二章 分子動力學模擬.....................................................11 2.1 分子動力學之基本假設與運動方程式...........................................11 2.2 分子間作用力與勢能函數...............................................................12 2.2.1 Lennard-Jones 勢能....................................................................13 2.2.2 Morse 勢能.................................................................................13 2.3 截斷勢能...........................................................................................14 2.4 邊界條件...........................................................................................15 2.4.1 週期性邊界條件........................................................................15 2.4.2 最小映像法則............................................................................16 2.5 初始位置和初始速度.......................................................................18 2.6 Verlet 表列法.....................................................................................20 2.7 Gear 五階預測修正法......................................................................22 2.8 速度修正...........................................................................................25 2.9 參數無因次化...................................................................................26 2.10 程式流程圖.....................................................................................28 第三章 系統模擬與模擬結果..........................................29 3.1 物理模型...........................................................................................29 3.2 模擬參數與基準參數.......................................................................32 3.3 模擬結果與討論...............................................................................36 3.3.1 系統溫度對充模、成形與回彈影響之模擬結果與討論..........36 3.3.2 系統溫度對力量變化影響之模擬結果與討論........................45 3.3.3 保壓時間對充模、成形與回彈影響之模擬結果與討論..........49 3.3.4 保壓時間對力量變化影響之模擬結果與討論........................57 3.4 模擬結果總結...................................................................................60 3.4.1 溫度參數模擬結果總結............................................................60 3.4.2 保壓時間參數模擬結果總結....................................................62 第四章 實驗儀器介紹和實驗準備與流程................67 4.1 實驗儀器介紹...................................................................................67 4.1.1 真空濺鍍機................................................................................67 4.1.2 奈米壓印機台............................................................................69 4.1.3 原子力顯微鏡............................................................................71 4.1.4 奈米壓痕量測儀........................................................................72 4.1.5 I-line光學步進機........................................................................73 4.1.6 TCP多晶矽乾式蝕刻機.............................................................78 4.1.7 掃瞄式電子顯微鏡....................................................................80 4.2 實驗材料準備...................................................................................82 4.2.1 矽模具準備................................................................................82 4.2.2 金薄膜準備................................................................................84 4.3 實驗流程...........................................................................................86 4.3.1 實驗目的....................................................................................86 4.3.2 實驗參數說明............................................................................86 4.3.3 實驗方法....................................................................................88 4.3.4 實驗流程圖................................................................................92 第五章 實驗結果與討論....................................................93 5.1 實驗前模具與金薄膜量測結果與討論...........................................93 5.1.1 模具量測結果與討論................................................................93 5.1.2 金薄膜量測結果與討論............................................................97 5.2 奈米壓痕實驗結果與討論...............................................................99 5.3 奈米壓印實驗結果與討論.............................................................103 5.3.1 不同溫度下之實驗結果與討論..............................................104 5.3.2 不同保壓時間下之實驗結果與討論......................................112 5.4 壓印實驗結果總結.........................................................................118 5.4.1 不同溫度下壓印實驗結果總結..............................................118 5.4.2 不同保壓時間下壓印實驗結果總結......................................121 第六章 結論與未來工作..................................................124 6.1 結論.................................................................................................124 6.2 未來工作.........................................................................................125 參考文獻................................................................................................128 圖目錄 圖1-1 奈米壓印示意圖..........................................................................2 圖1-2 奈米壓印示意圖...........................................................................4 圖1-3 滾輪式壓印示意圖......................................................................5 圖1-4 步進光感成形式奈米壓印示意圖..............................................6 圖1-5 雷射成形式直接奈米壓印示意圖..............................................7 圖1-6 不同物理尺度所對應之理論.......................................................9 圖2-1 Morse勢能函數與力量曲線圖...................................................14 圖2-2 截斷半徑示意圖.........................................................................15 圖2-3 二維週期性邊界條件示意圖.....................................................16 圖2-4 一維週期性邊界系統(情形一)..................................................17 圖2-5 一維週期性邊界系統(情形二)..................................................18 圖2-6 一維週期性邊界系統(情形三)..................................................18 圖2-7 FCC晶格排列............................................................................19 圖2-8 四顆原子排列............................................................................19 圖2-9 Verlet鄰近表列示意圖...............................................................21 圖2-10 程式流程圖..............................................................................28 圖3-1 系統物理模型示意圖.................................................................30 圖3-2 系統尺寸比例示意圖.................................................................31 圖3-3 壓印過程圖示............................................................................32 圖3-4 模擬實際尺寸圖.........................................................................34 圖3-5 模具移動速度與位移示意圖.....................................................35 圖3-6 不同溫度下,下壓過程與保壓前後充模情形...........................39 圖3-7 不同溫度下金薄膜之壓印成形結果.........................................43 圖3-8 不同溫度下,保壓前中後塑性原子變化圖...............................45 圖3-9 模具最底層原子示意圖.............................................................46 圖3-10 不同溫度下模具底層原子所受Z方向力量圖........................47 圖3-11 不同溫度下金薄膜所受力量隨步階變化圖...........................48 圖3-12 金薄膜保壓前與保壓後之充模情形.......................................52 圖3-13 不同保壓時間下金薄膜之壓印成形結果...............................54 圖3-14 回彈原子佔據模具空間示意圖...............................................55 圖3-15 壓印後三維側視圖及回彈原子示意圖...................................56 圖3-16 保壓時間對回彈百分比...........................................................57 圖3-17 不同保壓時間下模具底層原子所受Z方向力量圖................58 圖3-18 不同保壓時間下金薄膜所受力量隨步階變化圖...................59 圖4-1 離子濺擊示意圖........................................................................68 圖4-2 真空濺鍍機示意圖....................................................................69 圖4-3 奈米壓印機台外觀....................................................................71 圖4-4 奈米壓印載台............................................................................71 圖4-5 原子力顯微鏡結構示意圖.........................................................72 圖4-6 奈米壓痕機台外觀.....................................................................73 圖4-7 奈米壓印痕機台內部 ...............................................................73 圖4-8 旋轉塗佈示意圖........................................................................75 圖4-9 以熱墊板進行光阻固化示意圖................................................75 圖4-10 投影式曝光與重複且步進曝光示意圖..................................76 圖4-11 顯影程序示意圖......................................................................77 圖4-12 I-line光學步進機......................................................................78 圖4-13 蝕刻反應室示意圖...................................................................79 圖4-14 SEM內部構造示意圖...............................................................81 圖4-15 模具製作過程示意圖..............................................................83 圖4-16 模具線寬分佈示意圖..............................................................83 圖4-17 單一線寬模具圖樣分佈示意圖..............................................84 圖4-18 模具與晶圓大小示意圖..........................................................84 圖4-19 金薄膜製作示意圖..................................................................85 圖4-20 金薄膜切片示意圖..................................................................85 圖4-21 奈米壓痕量測壓頭位移圖......................................................87 圖4-22 模具切割示意圖......................................................................89 圖4-23 金薄膜切片示意圖..................................................................90 圖4-24 壓印側視示意圖......................................................................90 圖4-25 壓印元件與設備示意圖..........................................................91 圖4-26 實驗流程圖..............................................................................92 圖5-1 以AFM掃描線寬500nm圖樣的二維及三維圖形...................95 圖5-2 400 nm、700 nm及1000 nm線寬之模具SEM圖.....................97 圖5-3 五種金薄膜厚度量測結果........................................................99 圖5-4 奈米壓痕結果三維視圖..........................................................100 圖5-5 不同厚度之金薄膜楊氏係數..................................................100 圖5-6 不同厚度之金薄膜硬度..........................................................101 圖5-7 不同厚度之金薄膜力量對時間曲線圖..................................102 圖5-8 壓印結果中間俯視圖,放大3萬倍.........................................105 圖5-9 壓印結果兩端俯視圖,放大3萬倍.........................................107 圖5-10 壓印結果中間側視圖,放大6萬倍.......................................108 圖5-11 壓印結果兩端側視圖,放大6萬倍.......................................109 圖5-12 不同溫度參數下壓印結果截面圖.........................................111 圖5-13 壓印結果中間俯視圖,放大3萬倍.......................................112 圖5-14 壓印結果兩端俯視圖,放大3萬倍.......................................114 圖5-15 壓印結果中間側視圖,放大6萬倍.......................................115 圖5-16 壓印結果兩端側視圖,放大6萬倍.......................................116 圖5-17 不同保壓時間參數下壓印結果截面圖................................117 表目錄 表2-1 Verlet鄰近列表...........................................................................22 表2-2 Gear預測修正法參數表.............................................................24 表2-3 系統模擬之無因次化表.............................................................27 表3-1 Morse勢能函數參數數值表.......................................................33 表3-2 模擬參數變化表.........................................................................36 表3-3 不同保壓步階下,回彈原子數與回彈百分比...........................56 表3-4 各方面表現較佳之模擬溫度範圍表.........................................63 表3-5 各方面表現較佳之模擬保壓時間範圍表.................................66 表4-1 奈米壓印機台設備規格............................................................70 表4-2 奈米壓印實驗參數表................................................................88 表5-1 模具高度量測表........................................................................94 表5-2 不同溫度下的成形寬度表......................................................106 表5-3 不同溫度下的成形高度表......................................................111 表5-4 不同保壓時間下的成形寬度表..............................................113 表5-5 不同保壓時間下的成形高度表..............................................118 表5-6 各方面表現較佳之實驗溫度範圍表......................................120 表5-7 各方面表現較佳之實驗保壓時間範圍表...............................123

    參考文獻

    1. 莊達仁,”VLSI 製造技術”,高立圖書有限公司,台北,2002。
    2. Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom,” Nanoimprint lithography”, J. Vac. Sci. Technol. B 14(6), 1996.
    3. 蔡宏營,奈米轉印技術介紹,工研院機械所奈米技術部研究員兼經理。
    4. Hua Tan, Andrew Gilbertson, and Stephen Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 1998.
    5. Ecron Thompson, Peter Rhyins, Ron Voisin, S.V. Sreenivasan, Patirck Martin, “Fabrication of Step and Flash Imprint Lithography Templates Using Commercial Mask Process” Molecular Imprints, Inc., 1807C W. Braker Lane, Austin, TX 78585.
    6. L Jay Guo, “Recent progress in nanoimprint technology and its application”J. Phys D: Appl. Phys. 37 R123-R141, 2004.
    7. http://oemagazine.com/fromTheMagazine/sep02/pdf/eyeontech.pdf
    8. J.E. Lennard Jones, “The Determination of Molecular Fields, I. From the Variation of Viscosity of a Gas with Temperature ”, Proc.Roy.Soc. (Lond),106A,441 (1924) ; “The Determination of Molecular Fields, Ⅱ.From the Equation of State of a Gas”, Proc.Roy.Soc.(Lond), 106A,463, 1924.
    9. J.H.Irving and J.G. Kirkwood, “The Statistical Mechanics of Transport Process.Ⅳ. The Equation of Hydrodynamics”, J.Chem.Phys, Vol 18, P 817, 1950.
    10. Girifalco, L.A. and Weizer, V.G.., “Application of the Morse Potential Function to Cubic Materials”, Phys.Rew, 114 No3, P 687-690, 1959.
    11. L.Verlet, “Computer Experiments on Classical Fluid. I. Thermodynamical Properties of Lennard-Jones Fluids”, Mol.Phys.Rev,Vol 159,P 98, 1967.
    12. Hualiang Yu, James B Adams and Louis G Hector Jr, “ Molecular Dynamics Simulation of High-Speed Nanoindentation, ” Modelling Simul. Master.Sci. Eng. 10 319-329, 2002.
    13. 陳道隆,”以分子動力學研究奈米級微結構之拉深、壓縮、扭轉變形機制”,國立成功大學機械系碩士論文,民國90年7月。
    14. R. J. Arsenault, J. R. Beeler, “Computer Simulation in Material Science,” Asm. International, USA, 1988.
    15. William D. Callister, Jr. “Materials Science and Engineering an Introduction” John Wiely & Sons, Inc. USA, 2003.
    16. J. E. Lennard-Jones, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 441, 1924 ; “The Determination of Molecular Fields. II. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 463, 1924.
    17. J. M. Haile, “Molecular Dynamics Simulation: Elementary Methods,” John Wiely & Sons, Inc., USA, 1992.
    18. D.C.Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, 1997.
    19. 蕭志仲,” 溫度對奈米尺度下接觸物體間黏滯現象之影響:分子動力學模擬及原子力顯微鏡實驗”,國立清華大學動力機械工程學系碩士論文,民國93年6月。
    20. Q. C. Hsu, C. D. Wu, and T. H. Fang, “Deformation mechanism and punch taper effects on nanoimprint process by molecular dynamics,” Japanese Journal of Applied Physics Vol. 43, No. 11A, pp. 7665-7669, 2004.
    21. Hualiang Yu, James B. Adams, and Louis G. Hector Jr, ” Molecular dynamics simulation of high-speed nanoindentation,” Modelling Simul. Mater. Sci. Eng. 10 319–329, 2002.
    22. T. H. Fang, C. I. Weng, and J. G. Chang, “Molecular dynamics analysis of temperature effects on nanoindentation measurement,” Material Science and Engineering A357 7-12, 2003.
    23. 吳政達,” 二元合金微、奈米成形之實驗與理論研究”,國立高雄應用科技大學機械與精密工程研究所碩士論文,民國90年7月。
    24. T. H. Fang, “Study on the Nano-scale Processing Technology Using Atomic Force Microscopy,” Ph.D. Dissertation, National Cheng Kung University, Tainan, Taiwan, 2000.
    25. http://www.hysitron.com/Products/ProductPages/products_triboindenter.htm
    26. http://www.ndl.org.tw/equip/no10ways/LI-003B.htm
    27. 蘇志杰,奈米粉體粒徑檢測方法簡介,工研院機械所奈米機械技術组奈米材料設備技術部。
    28. Jun Taniguchi, Yuji Tokano, IwaoMiyamoto, Masanori Komuro and Hiroshi Hiroshima,” Diamond nanoimprint lithography,” Nanotechnology 13 592–596, 2002.
    29. A.A. Volinsky, J. Vella, I.S. Adhihetty, V. Sarihan, L. Mercado, B.H. Yeung, and W.W. Gerberich, ”Microstructure and mechanical properties of electroplated Cu thin films,” Mat. Res. Soc. Symp. Vol. 649, 2001.
    30. D. E. Kramer, A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Substrate effects on indentation plastic zone development in thin soft films,” J. Mater. Res., Vol. 16, No. 11, Nov 2001.
    31. D. Weiss, H. GaoO, and E. Arzt, “Constrained Diffusional Creep in UHV-Produced copper Thin Films,” Acta mater. 49 2395–2403, 2001.
    32. Alex A. Volinsky, Neville R. Moody, and William W. Gerberich, ”Nanoindentation of Au and Pt/Cu thin film at elevated temperatures,” J. Mater. Res., Vol. 19, No. 9, Sep 2004.
    33. Martha Mary McCann, “Nanoindentation of gold single crystals,” Virginia Polytechnic Institute and State University, Materials Science and Engineering, Doctor of Philosophy, 2004.
    34. S. Soare, S. J. Bull, A.G. O’Neil, N. Wright, A. Horsfall, and J.M.M. dos Santos, “Nanoindentation assessment of aluminium metallization; the effect of creep and pile-up,” Surface and Coatings Technology 177-178 497-503, 2004.
    35. 洪明鈞,”以分子動力學研究奈米摩擦”,國立成功大學機械工程學系碩士論文,民國90年6月。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE