研究生: |
陳星佑 Hsing-Yu Chen |
---|---|
論文名稱: |
溫度與保壓時間效應對奈米級金屬壓印成形性之影響 — 分子動力學模擬與奈米壓印實驗 Temperature and Pressure Holding Time Effect on Formation of Metallic Patterns by Nanoimprint Technology — Molecular Dynamics Simulation and Nanoimprint Experiment |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 132 |
中文關鍵詞: | 分子動力學 、奈米壓印 、溫度 、保壓時間 、金屬 、成形 |
外文關鍵詞: | Molecular Dynamics, Nanoimprint, Temperature, Pressure Holding Time, Metal, Formation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用奈米壓印的方式,將金薄膜成形為奈米級結構,並探討不同溫度與保壓時間等製程參數對結構成形的影響;本論文主要分成兩個部分,第一部分是電腦模擬部分,利用分子動力學模擬的方式,改變模擬時的溫度與保壓時間,觀察奈米壓印過程的情形,其結果與趨勢可做為奈米壓印實驗的參考;第二部分是奈米壓印實驗部分,本研究利用矽模具與金薄膜進行奈米壓印實驗,設計不同的溫度與保壓時間參數,期望可以找出最佳的奈米壓印實驗環境。
由分子動力學模擬與奈米壓印實驗的結果,我們可以發現當溫度愈高或是保壓時間愈長時,成形結構會有較寬及較深的情形,若是希望奈米壓印實驗結果和模具形狀在尺寸上較為相似,則實驗環境需調整為溫度1000C及保壓時間4分鐘。
This thesis presents a theoretical and experimental study on the formation of nano-scale patterns on gold thin film by using nanoimprint technique. The aim is to study the effect of different manufacturing environments, temperature and pressure holding time, on the formation of metal patterns. This thesis is mainly divided into two parts. The first part employs molecular dynamics simulation method for the theoretical study to observe the nanoimprint process by changing its simulation temperature and holding time. The simulation results can not only be used for examining the mechanics in the forming process but also be taken as a reference of nanoimprint experiment. The second part is nanoimprint experiment. This research uses silicon mold and gold thin film to conduct the experiment. Different parameters, temperature and holding time, are designed to find the optimum experimental environment for nanoimprint process.
From the results of molecular dynamics simulation and nanoimprint experiment, one can find that if the temperature is higher or the holding time is longer, the pattern formation will be wider or deeper. The results illustrate that the experimental environment can be assigned to be 1000C in temperature and 4 minutes in holding time in order to obtain good quality of pattern transfer of the mold.
參考文獻
1. 莊達仁,”VLSI 製造技術”,高立圖書有限公司,台北,2002。
2. Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom,” Nanoimprint lithography”, J. Vac. Sci. Technol. B 14(6), 1996.
3. 蔡宏營,奈米轉印技術介紹,工研院機械所奈米技術部研究員兼經理。
4. Hua Tan, Andrew Gilbertson, and Stephen Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 1998.
5. Ecron Thompson, Peter Rhyins, Ron Voisin, S.V. Sreenivasan, Patirck Martin, “Fabrication of Step and Flash Imprint Lithography Templates Using Commercial Mask Process” Molecular Imprints, Inc., 1807C W. Braker Lane, Austin, TX 78585.
6. L Jay Guo, “Recent progress in nanoimprint technology and its application”J. Phys D: Appl. Phys. 37 R123-R141, 2004.
7. http://oemagazine.com/fromTheMagazine/sep02/pdf/eyeontech.pdf
8. J.E. Lennard Jones, “The Determination of Molecular Fields, I. From the Variation of Viscosity of a Gas with Temperature ”, Proc.Roy.Soc. (Lond),106A,441 (1924) ; “The Determination of Molecular Fields, Ⅱ.From the Equation of State of a Gas”, Proc.Roy.Soc.(Lond), 106A,463, 1924.
9. J.H.Irving and J.G. Kirkwood, “The Statistical Mechanics of Transport Process.Ⅳ. The Equation of Hydrodynamics”, J.Chem.Phys, Vol 18, P 817, 1950.
10. Girifalco, L.A. and Weizer, V.G.., “Application of the Morse Potential Function to Cubic Materials”, Phys.Rew, 114 No3, P 687-690, 1959.
11. L.Verlet, “Computer Experiments on Classical Fluid. I. Thermodynamical Properties of Lennard-Jones Fluids”, Mol.Phys.Rev,Vol 159,P 98, 1967.
12. Hualiang Yu, James B Adams and Louis G Hector Jr, “ Molecular Dynamics Simulation of High-Speed Nanoindentation, ” Modelling Simul. Master.Sci. Eng. 10 319-329, 2002.
13. 陳道隆,”以分子動力學研究奈米級微結構之拉深、壓縮、扭轉變形機制”,國立成功大學機械系碩士論文,民國90年7月。
14. R. J. Arsenault, J. R. Beeler, “Computer Simulation in Material Science,” Asm. International, USA, 1988.
15. William D. Callister, Jr. “Materials Science and Engineering an Introduction” John Wiely & Sons, Inc. USA, 2003.
16. J. E. Lennard-Jones, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 441, 1924 ; “The Determination of Molecular Fields. II. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 463, 1924.
17. J. M. Haile, “Molecular Dynamics Simulation: Elementary Methods,” John Wiely & Sons, Inc., USA, 1992.
18. D.C.Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, 1997.
19. 蕭志仲,” 溫度對奈米尺度下接觸物體間黏滯現象之影響:分子動力學模擬及原子力顯微鏡實驗”,國立清華大學動力機械工程學系碩士論文,民國93年6月。
20. Q. C. Hsu, C. D. Wu, and T. H. Fang, “Deformation mechanism and punch taper effects on nanoimprint process by molecular dynamics,” Japanese Journal of Applied Physics Vol. 43, No. 11A, pp. 7665-7669, 2004.
21. Hualiang Yu, James B. Adams, and Louis G. Hector Jr, ” Molecular dynamics simulation of high-speed nanoindentation,” Modelling Simul. Mater. Sci. Eng. 10 319–329, 2002.
22. T. H. Fang, C. I. Weng, and J. G. Chang, “Molecular dynamics analysis of temperature effects on nanoindentation measurement,” Material Science and Engineering A357 7-12, 2003.
23. 吳政達,” 二元合金微、奈米成形之實驗與理論研究”,國立高雄應用科技大學機械與精密工程研究所碩士論文,民國90年7月。
24. T. H. Fang, “Study on the Nano-scale Processing Technology Using Atomic Force Microscopy,” Ph.D. Dissertation, National Cheng Kung University, Tainan, Taiwan, 2000.
25. http://www.hysitron.com/Products/ProductPages/products_triboindenter.htm
26. http://www.ndl.org.tw/equip/no10ways/LI-003B.htm
27. 蘇志杰,奈米粉體粒徑檢測方法簡介,工研院機械所奈米機械技術组奈米材料設備技術部。
28. Jun Taniguchi, Yuji Tokano, IwaoMiyamoto, Masanori Komuro and Hiroshi Hiroshima,” Diamond nanoimprint lithography,” Nanotechnology 13 592–596, 2002.
29. A.A. Volinsky, J. Vella, I.S. Adhihetty, V. Sarihan, L. Mercado, B.H. Yeung, and W.W. Gerberich, ”Microstructure and mechanical properties of electroplated Cu thin films,” Mat. Res. Soc. Symp. Vol. 649, 2001.
30. D. E. Kramer, A. A. Volinsky, N. R. Moody, and W. W. Gerberich, “Substrate effects on indentation plastic zone development in thin soft films,” J. Mater. Res., Vol. 16, No. 11, Nov 2001.
31. D. Weiss, H. GaoO, and E. Arzt, “Constrained Diffusional Creep in UHV-Produced copper Thin Films,” Acta mater. 49 2395–2403, 2001.
32. Alex A. Volinsky, Neville R. Moody, and William W. Gerberich, ”Nanoindentation of Au and Pt/Cu thin film at elevated temperatures,” J. Mater. Res., Vol. 19, No. 9, Sep 2004.
33. Martha Mary McCann, “Nanoindentation of gold single crystals,” Virginia Polytechnic Institute and State University, Materials Science and Engineering, Doctor of Philosophy, 2004.
34. S. Soare, S. J. Bull, A.G. O’Neil, N. Wright, A. Horsfall, and J.M.M. dos Santos, “Nanoindentation assessment of aluminium metallization; the effect of creep and pile-up,” Surface and Coatings Technology 177-178 497-503, 2004.
35. 洪明鈞,”以分子動力學研究奈米摩擦”,國立成功大學機械工程學系碩士論文,民國90年6月。