研究生: |
卓冠宇 Zhuo, Guan-Yu |
---|---|
論文名稱: |
波方程上的局部適定性問題 Local well-posedness of the Wave equation |
指導教授: |
江金城
Jiang, Jin-Cheng |
口試委員: |
蔡東和
Tsai, Dong-He 念家興 Nian, Jia-Xing |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 24 |
中文關鍵詞: | 波方程 |
外文關鍵詞: | Wave equation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文一開始會先介紹波方程和薛丁格方程上的Strichartz estimate,接著
會運用此估計,去解決波方程上的局部適定性問題(Local well-posedness)。
In this dissertation we discuss the Strichartz estimates on the Schrödinger
equation, Wave equation and application of the Wave equation.
First part we introduce some de
nitions, notations and basic theorems
from real analysis.
Second part we will prove the Strichartz estimates on the Schrödinger
equation follows from Taos Nonlinear dispersive equations: local and global
analysis and the Wave equation on R3. On the Wave equation, we will follow
the proofs from Christopher D. Sogge, Lectures on nonlinear wave equations.
The Littlewood-paley theorem plays a important role in this proof and we
use many technique of scaling.
Finally, we will use the Strichartz estimates on theWave equation of form
u = juj2u;Dom(u) = R1+3
+ with initial data u(0; ) = f; @tu(0; ) = g to
solve the existence of (weak) solutions and use same idea to get the local
well-posedness.
References
[1] Terence Tao, Nonlinear dispersive equations: local and global analysis,
2006.
[2] Christopher D. Sogge, Lectures on nonlinear wave equations, International
Press, 1995.
[3] Arick Shao, The Christ-Kiselev lemma.
[4] Gustavo Ponce, Felipe Linares, Introduction to nonlinear dispersive equa-
tions, Springer New York, 2009.
24