簡易檢索 / 詳目顯示

研究生: 沙美莉
Maliya Syabriyana
論文名稱: 輻射暴露對並五苯的化學和物理性質之影響
The Effect of Radiation Exposure on Chemical and Physical Properties of Pentacene
指導教授: 李志浩
Lee, Chih Hao
口試委員: 李志浩
Lee, Chih Hao
王本誠
Wang, Pen Cheng
許瑤真
Hsu, Yao Jane
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 48
中文關鍵詞: 並五苯輻射暴露
外文關鍵詞: pentacene, irradiation effect
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We studied the effect of gamma-ray on the physical and chemical properties of pentacene thin film using synchrotron X-ray diffraction (XRD) and near edge X-ray absorption fine structure (NEXAFS), and Scanning Electron Microscopy (SEM). Vacuum evaporated pentacene thin films were irradiated at different total doses. XRD measurement showed the reduced intensity of thin film peak in accordance with the irradiation dose. At higher doses than 500 Gy the bulk phase slightly increased, which suggests the transformation from the thin film phase into the bulk phase. Both XRD and SEM results confirm the slight reduction of the grain size after irradiation. This may be due to the molecular disordering. Annealing treatment at 80℃ for 4 h induced the reordering of misoriented pentacene crystals in thin film phase and bulk phase. Performing the total electron yield NEXAFS, we found small peaks of oxygen K-edge after irradiation that suggests the existence of some radical oxidation groups. However, no carbon bond breakage was found in pentacene after irradiation. Later resistivity measurements showed that the resistance decreases at dose up to 400 Gy, but it increased at dose higher than 400 Gy. This observation is believed to be related to the grain size change and can be explained basing on the doping effect in the crystal. Our findings suggest that pentacene can be exploited as reversible radiation dosimeter. Gamma-ray drives the crystallinity from being well ordered to be disorder.


    Abstract i Acknowledgment ii Contents iii List of Figures v List of Tables vii Chapter 1 Introduction 1 1.1 Overview of Pentacene Thin Film Studies 2 1.2 The Pentacene Molecule 4 1.3 Polymorphs of Pentacene Thin Films 5 1.4 Radiation Effect Mechanism to Organic Pentacene 6 1.5 Motivation 9 Chapter 2 Experimental procedure 11 2.1 Flow Chart 11 2.2 Substrate Cleaning 12 2.3 Vacuum Evaporator Deposition of Pentacene 12 2.4 Radiation Exposure 13 2.5 Sample Annealing 13 2.6 Analysis Tools 14 2.6.1 X-ray Reflectivity (XRR) 14 2.6.2 X-Ray Diffraction (XRD) 15 2.6.3 Near Edge X-Ray Absorption Fine Structure (NEXAFS) 17 2.6.4 Scanning Electron Microscopy (SEM) 19 2.6.5 Resistance measurement 19 Chapter 3 Results and Discussions 21 3.1 Physical Properties Analysis 21 3.1.1 X-ray Diffraction 21 3.1.2 Scanning Electron Microscopy 25 3.2 Chemical Properties Analysis: NEXAFS 27 3.3 Resistance Measurement 30 3.4 Annealing after Irradiation 31 Chapter 4 Conclusions and Future Works 36 4.1 Conclusions 36 4.2 Future Works 36 References 38 Appendix 1 40 Appendix 2 41 Appendix 3 42

    [1] C. D. Dimitrakopoulos and P. R. L. Malenfant, J. Adv. Mater, vol. 14, 99, 2002.
    [2] Z. Bao and J. Locklin, Organic Field-Effect Transistors, CRC Press, Boca Raton, 2007.
    [3] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, IEEE Electron Device Letters, vol. 18, No. 3, March ,1997.
    [4] H. N. Raval, D. S. Sutar, P. R. Nair, and V. R. Rao, Org. Elect. 14, 2013.
    [5] W. Han, H. Yoshida, Nobuo Ueno, and S. Kera, Appl. Phys. Lett., vol. 103, 123303, 2013.
    [6] H. Yano, L. Cai, T. Hirao, Z. Duan, Y. Takayanagi, H. Ohuchi, H. Ueki, and T. Oshima, Adv. Mater. Res., vol. 306-307, 2011.
    [7] Ricardo Ruiz, Alex C. Mayer, B. Nickel, G. Scoles, A. Kazimirov, R.L. Headrick, Zahirul Islam and George G. Malliaras, Appl. Phys. Lett., vol. 85, No. 21, 2004.
    [8] K. Fukuda, T. Sekitani, and T. Someya, Appl. Phys. Lett., 95, 023302, 2009.
    [9] Ruiz, Ricardo, et al. “Pentacene Thin Film Growth”, Chem. Mater., 16, pp. 4497-4508, 2004.
    [10] Hou-Yen Tsao and Yow-Jon Lin, Appl. Phys. Lett., 101, 113306, 2012.
    [11] Shtein Max, J. Mapel, J. B. Benziger, S. R. Forest, App. Phys. Lett.,vol. 81, No. 2, 2002.
    [12] Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, and T. Sakurai, App. Phys. Lett. 84, 3789, 2004.
    [13] T. V. Desai, A. R. Woll, and J. R. Engstrom, J. Phys. Chem. C, 116, pp.12541-12552, 2012.
    [14] A. Vollmer, O. D. Jurchescu, I. Arfaoui, I. Salzman, T. T. M. Palstra, P. Rudolf, and N. Koch, J. Eur. Phys. E 17, pp. 339-343, 2005.
    [15] K. J. Lee, K. Ihm, T. H. Kang, and S. Chung, Surf. Sci., vol. 603, pp.3445-3447, 2009.
    [16] A. Neuhold, J. Novak, H. G. Flesch, A. Moser, T. Djuric, L. Grodd, S. Grigorian, U. Pietsch, and R. Resel, Nucl. Instrum. and Meth. in Phys. Res. B 284, 2012.
    [17] O. D. Jurchescu , J. Baas, and Thomas T. M. Palstra, Am. Inst. of Phys.. 2004. DOI: 10.1063/1.1704874.
    [18] R. B. Campbell and J. Monteath Robertson, Acta Cryst., 15, 289, 1962.
    [19] Georg Hahner. Chem. Soc. Rev. 35, 1244–1255, 2006.
    [20] Joachim Stohr, NEXAFS Spectroscopy, series: Springer Series in Surface Sciences (Book 25). Springer, Tokyo, 2003.
    [21] J. E. Northrup, M. L. Tiago, and S. G. Louise, Phys. Rev. B, 66, 121404, ®2002.
    [22] I.P.M Bouchoms, W. A. Schoonveld, J. Vrijmoeth, and T. M. Klapwijk, Synth. Met., 104, pp. 175-178, 1999.
    [23] T. Kakudate, N. Yoshimoto and Y. Saito, Appl. Phys. Lett. 90, 081903, 2007.
    [24] R. L. Clough, “Beam Interactions with Materials and Atoms”, Nucl. Instrum. and Meth. in Phys. Res. B, vol. 185, Issues 1–4, pp. 8–33, 2001.
    [25] R. Clough, G. Malone, K. Gillen, J. Wallace, and M. Sinclair, Polym. Degrad. Stab., 49, 305, 1995.
    [26] H. Yano, L. Cai, T. Hirao, Z. Duan, Y. Takayanagi, H. Ohuchi, H. Ueki, T. Oshima, Adv. Mater. Res., vol. 306-307, 2011.
    [27] R. A. B. Devine, M. M. Ling, A. B. Mallik, M. Roberts, and Z. Bao, App. Phys. Lett. 88, 151907, 2006.
    [28] C.H. Wang, S.W. Chen, and J. Hwang, Appl. Phys. Lett. 95, 103302, 2009.
    [29] http://physics.memphis.edu/People/arichter/LabXRR.htm.
    [30] https://physiscs.valpo.edu.
    [31] https://pd.chem.ucl.ac.uk.
    [32] M Kitamura and Y Arakawa. J. Phys.: Condens. Matter 20, 2008.
    [33] G. Yoshikawa et al. J. Surf. Sci., 600, 2006.
    [34] F. Zheng, B. N. Park, S. Seo, P. G. Evans, F. J. Himpsel, J. Chem. Phys. 126, 154702, 2000.
    [35] Y. Natsume, T. Kohno, T. Minakata, T. Konishi, E. M. Gullikson, and Y. Muramatsu, J. Phys. Chem. A, 116, 2012.
    [36] Han-Koo Lee, Jin-hee Han, Ki-jeong Kim, Tai-Hee Kang, and Bongsoo Kim, Surf. Sci. 601, pp. 1456-1460, 2007.
    [37] Dieter K., Semiconductor Material and Device Characterization, 3rd edition, Schroder Copyright: John Wiley & Sons Inc., 2006.
    [38] Dong Guo, Susumu Ikeda, Koichiro Saiki, Hiroyuki Miyazoe, and Kazuo Terashima, J. Appl. Phys. 99, 094502, 2006.
    [39] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
    [40] Y. Hosoi, K. Okamura, Y. Kimura, H. Ishii, and M. Niwano, App. Surf. Sci. 244, 607 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE