簡易檢索 / 詳目顯示

研究生: 許育和
Yu-Ho Hsu
論文名稱: 正交分頻多工傳送系統中使用8B/10B來有效率降低尖峰平均功率比
8B/10B Code for Efficient PAPR Reduction in OFDM System
指導教授: 吳仁銘
Jen-ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
中文關鍵詞: 正交分頻多工尖峰平均功率比
外文關鍵詞: OFDM, PAPR
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工(OFDM)技術在無線通訊傳輸上擁有許多的優點,如高頻譜使用效率,對符元間相互干擾和多重路徑衰減效應相當優異的扺抗力。因此,現在已經廣泛地應用於各種數位傳輸系統中,像是數位影像廣播系統、無線都會區域網路、IEEE 802.11a(一個高傳輸速率的無線區域網路標準)等等。然而,雖然正交分頻多工系統有著很多好處,但卻遭遇到一個相當嚴重的問題–多載波訊號存在著很高的尖峰平均功率比(PAPR)。因而,高功率放大器需要較寬廣的線性放大區來避免失真現象的發生,但如此一來,除了成本上較為昂貴外,也相當地沒有效率。在本篇論文中,提出了一個降低尖峰平均功率比的新方法–在正交分頻多工系統的時間域上,使用了一個直流均衡的八位元轉十位元的編碼。從模擬結果中可以看到,在16個子載波(sub-carrier)數及使用正交相移鍵控(QPSK)的正交分頻多工系統裡,所提出的方法可以將理論上最大的尖峰平均功率比由12dB降為7.4dB。而且,所提出的編碼系統除了複雜度較低以外,其複雜度也不會隨著正交分頻多工系統的子載波數增加而上升;而因為此編碼是使用在正交分頻多工系統的時間域上,所以也沒有資料傳輸率上的損失,只需要額外的數位/類比轉換器精準度上的稍微上升。除此之外,我們亦嘗試了不一樣的轉碼表(mapping table),來觀察其對尖峰平均功率比所造成的影響。


    High PAPR of the transmitted signal is a major drawback of OFDM communication systems. The PAPR reduces the power efficiency of the RF high power amplifier in the transmitter and caused distortion in the system. In this thesis, we propose a new PAPR reduction method, which uses a DC-balanced 8B/10B code in the time domain of OFDM system to reduce PAPR. The simulation result shows that the proposed method can reduce the peak PAPR value of a 16 subcarrier OFDM system utilizing QPSK modulation to < 7.4dB. The theoretical peak PAPR for the same system would be 12 dB. Moreover, the proposed method has very low complexity and the complexity does not increase as the number of OFDM subcarriers increases.

    Contents Abstract i Contents ii 1. Introduction 1 2. Basics of OFDM 3 2.1 OFDM Symbol Structure ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 3 2.2 Guard Time and Cyclic Prefix ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 4 2.3 Main Properties and Applications of OFDM ﹒﹒﹒﹒﹒﹒﹒﹒﹒ 5 3. The Peak Power Problem in OFDM 8 3.1 PAPR in OFDM Systems ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 8 3.2 Effects of High PAPR ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 10 3.3 PAPR Reduction Techniques ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 11 4. Overview of 8B/10B Code 13 4.1 A DC-Balanced Code ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 13 4.2 The 8B/10B Coding Map ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 15 4.3 Implementation Aspects ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 21 5. PAPR Reduction Using 8B/10B Code 26 5.1 PAPR Reduction using 8B/10B Code in Time Domain ﹒﹒﹒﹒﹒ 26 5.2 Simulation and Discussion ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 28 6. Conclusion 35 Bibliography 36 List of Figures 2.1 Illustration of ICI ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 5 3.1 CCDF of PAPR{s[n]} and PAPR{s(t)} ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 9 3.2 the Transmit Signal Power v.s Time ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 11 3.3 In-band Distortion ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 11 4.1 Disparity vs Digit Intervals ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 15 4.2 Block Diagram of the 8B/10B Encoder ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 22 4.3 5B/6B Bit Encoding Functions ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 22 4.4 3B/4B Bit Encoding Functions ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 23 4.5 Disparity Classification ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 23 4.6 Control of Complementation﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 24 4.7 5B/6B Encoding Generation﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 24 4.8 3B/4B Encoding Generation﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 25 4.9 Block Diagram of the 8B/10B Decoder ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 25 5.1 Block diagram of OFDM system ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 27 5.2 Block diagram of proposed 8B/10B encoded OFDM system ﹒﹒﹒ 27 5.3 Instantaneous power of an uncoded OFDM system with QPSK modulation and N=128 subcarriers ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 28 5.4 Instantaneous power of an coded OFDM system with QPSK modulation and N=128 subcarriers ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 29 5.5 CCDF of PAPR for QPSK and quantized (1+15) bits, 1 for sign bit ﹒ 29 5.6 mean of average and peak power with different subcarriers N = 2n ﹒ 31 5.7 mean of PAPR with different subcarriers N = 2n ﹒﹒﹒﹒﹒﹒﹒﹒﹒ 31 5.8 CCDF of PAPR, solid line for original 8B/10B, dotted line for method 1 32 5.9 CCDF of PAPR, solid line for original 8B/10B, dotted line for method 2 32 5.10 CCDF of PAPR, solid line for original 8B/10B, dotted line for changing encoding order ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 33 List of Tables 4.1 The Number of Words Having Particular Disparities ﹒﹒﹒﹒﹒﹒﹒ 14 4.2 5B/6B Encoding ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 16 4.3 3B/4B Encoding ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 17 4.4 6B/5B Decoding ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 19 4.5 4B/3B Decoding ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 20

    [1] R. van Nee and R. Prasad, OFDM for wireless multimedia communications. Artech House, 2000
    [2] IEEE Std 802.16™-2004 (Revision of IEEE Std 802.16-2001), “IEEE Standard for Local and metropolitan area networks”, 3 Park Avenue, New York, NY 10016-5997, USA
    [3] J. Tellado, Multicarrier Modulation with Low PAR: Applications to DSL and Wireless, Boston: Kluwer Academic, 2000
    [4] Ochiai and H. Imai, “On the distribution of the peak-to-average power ratio in OFDM signals,” IEEE Trans. Communications, Vol. 49, No.2, pp. 282-289, Feb. 2001
    [5] Nati Dinur and Dov Wulich, “Peak-to-Average Power Ratio in High-Order OFDM,” IEEE Trans. On Communications, Vol. 49, No.6, pp. 1063-1071, June 2001
    [6] M. Sharif and B.H. Khalaj, “Peak to mean envelope power ratio of oversampled OFDM signals: An analytical approach,” Proc. ICC 2001, pp. 1476-1480.
    [7] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Communications Letters, Vol. 5, No. 5, pp. 185-187, May 2001.
    [8] R. O’Neill and L. N. Lopes, “Envelope variations and spectral splatter in clipped multicarrier signals,” Proc. of PIMRC’95, Vol. 1, pp. 75-79, Sep 1995.
    [9] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes,” IEEE Trans. Inform. Theory, Vol. 45, pp. 2397-2417, Nov 1999.
    [10] S. Muller, R. Bauml, R. Fischer, and J. Huber, “OFDM with reduced peak-to-average power ratio by multiple signal representation,” Annals of Telecom, Vol. 53, pp.58-67, Feb 1997
    [11] S.H. Muller and J. B. Huber, “OFDM with Reduced Peak-to-Average Power Ratio by Optimum Combination of Partial Transmit Sequences,” Electronics Letters, Vol. 33, No. 5, pp. 368-369, Feb 1997
    [12] L.J. Cimini and N.R. Sollenberger “Peak-to-Average Power Ratio Recuction of an OFDM Signal using Partial Transmit Sequences,” IEEE International Conf. On Communications, Vol. 1, pp. 511-515, 1999
    [13] K. D. Choe, S. C. Kim and S.K. Park, “Pre-scrambling Method for PAPR Reduction in OFDM communication Systems,” IEEE Trans. On Comsumer Electronics, Vol. 50, No. 4, pp. 1044-1048, Nov 2004
    [14] A.X. Widmer and P.A. Franaszek, “A dc-balanced, partitioned block, 8B/10B transmission code,” IBM Journal of Research and Development, Vol. 27, No. 5, pp. 440-154, Sep 1983
    [15] J.M. Griffiths, “Binary Code Suitable for Line Transmission,” Electron. Lett. 5, 79-81, 1969

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE