研究生: |
張博裕 Chang,Po-Yu |
---|---|
論文名稱: |
Data-Driven Communications for Consensus Decision-Making in Wireless Sensor Networks 以資料為中心之傳輸技術在一致性決策式的無線感測網路之應用 |
指導教授: |
洪樂文
Hong,Yao-Win Peter |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 無線感測網路 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線感測網路隨著科技的日新月異,也漸漸有了諸多的實際應用。本篇論文主要在探討一個無線感測網路分散式偵測的問題,假設在一個大型無線感測網路之下,所有感測器去偵測一個同樣的現象,然後各自做出決定之後,經由一連串感測器間互相交換訊息,我們希望所有感測器達到共同一致的決定。
我們先參考了一篇論文所提出的Parley演算法保證根據此演算法,所有感測器都能得到最後一致的決定。然而此演算法有它的缺點,就是過度浪費傳輸頻寬。因而我們考慮了另外一種傳輸機制,叫做GTMA。使用GTMA傳輸機制之下,每個無線感測器會根據所收到的資訊的統計性質來決定自己本身的傳輸機制,因而能夠達到更加節省傳輸頻寬的效果。但是在此之前,我們討論的都是在單跳(Single-hop Network)網路,我的最主要的貢獻就是在於,將此方法推廣到多跳(Multi-hop Network)網路。並且,在多跳網路裡,我們發現使用GTMA還是能達到節省傳輸頻寬的效果,並且在傳輸能量的使用上也會比較節省。除此之外,我還考慮把整個網路先細分成數個小型的網路,先在每個小型網路內達到一致決定之後,再經由網路跟網路之間交換意見,達到最後一致的決定。在網路跟網路交換的過程中,我們也提出兩種方法去達到最後的一致決策。由實驗得知,不管用哪一種方法,我們都能夠更進一步地節省頻寬,但是也得付出錯誤率增加的代價,也就是說,這是一個傳輸頻寬與錯誤率之間做取捨的一個問題。所以如果錯誤率是在可容許的範圍內,我們所提出的方法相信還是有可取之處。
[1] I. Akyildiz, W. Su, Y. Sankarasubramanian, and E. Cayirci, \A survey on sensor net-
works," IEEE Commun. Mag., vol. 40, no. 8, pp. 102{114, Aug. 2002.
[2] J.-F. Chamberland and V. V. Veeravalli, \Decentralized Detection in Sensor Networks,"
IEEE Trans. Signal Processing, vol. 51, no. 2, pp. 407{416, Feb. 2003.
[3] R. Viswanathan and P. K. Varshney, \Distributed detection with multiple sensors: Part
I - fundamentals," in Proceedings of the IEEE, vol. 85, no. 1, 1997, pp. 54{63.
[4] J. N. Tsitsiklis, \Decentralized detection by a large number of sensors," Mathematics
of control, signals, and systems, vol. 1, no. 2, pp. 167{182, 1988.
[5] J. N. Tsitsiklis and M. Athans, \Convergence and asymptotic agreement in distributed
decision problems," IEEE Trans. Automat. Contr., vol. AC-29, no. 1, 1984.
[6] P. Gupta and P. R. Kumar, \The capacity of wireless networks," IEEE Trans. Inform.
Theory, vol. IT-46, no. 2, pp. 388{404, Mar. 2000.
[7] D. Marco, E. Duarte-Melo, M. Liu, and D. L. Neuho®, \On the many-to-one transport
capacity of a dense wireless sensor network and the compressibility of its data," in
Workshop on Information Processing in Sensor Networks (IPSN), Palo Alto, CA, Apr.
2003.
[8] Y.-W. Hong and A. Scaglione, \On multiple access for correlated sources: a content-
based group testing approach," in Proc. of IEEE Information Theory Workshop, San
Antonio, TX, Oct. 2004.
[9] Y.-W. P. Hong and A. Scaglione, \Group testing for binary markov sources: data-driven
group queries for cooperative sensor networks," IEEE Trans. Inform. Theory, vol. 54,
no. 8, pp. 3538{3551, Aug. 2008.
[10] P. F. Swaszek and P. Willett, \Parley as an approach to distributed detection," IEEE
Trans. Aerosp. Electron. Syst., vol. 31, no. 1, pp. 447{457, Jan. 1995.
[11] A. C.-C. Yao, \Some complexity questions related to distributive computing," in the
Proceedings of the 11th Annual ACM Symposium on the Theory of Computing, Apr.
1979.
[12] C. H. Papadimitriou and M. Sipser, \Communication complexity," in the Proceedings
of 14th Annual ACM Symposium on the Theory of Computing, Apr. 1982.
[13] A. Orlitsky and J. R. Roche, \Coding for computing," in Proc. on IEEE 36th Annual
Symposium on Foundations of Computer Science (FOCS'95), 1995.
[14] T. S. Han and S.-I. Amari, \Statistical inference under multiterminal data compression,"
IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2300{2324, Oct. 1998.
[15] R. Ahlswede and I. Csiszar, \Hypothesis testing with communication constraints," IEEE
Trans. Inform. Theory, vol. 32, no. 4, pp. 533{542, July 1986.
[16] D. Slepian and J. Wolf, \Noiseless coding of correlated information sources," IEEE
Trans. Inform. Theory, vol. 19, no. 4, pp. 471{480, July 1973.
[17] A. Wyner and J. Ziv, \The rate-distortion function for source coding with side infor-
mation at the decoder," IEEE Trans. Inform. Theory, vol. 22, no. 1, pp. 1{10, Jan.
1976.
[18] S. Pradhan, J. Kusuma, and K. Ramchandran, \Distributed compression in a dense
microsensor network," IEEE Signal Processing Mag., vol. 19, no. 2, pp. 51{60, Mar.
2002.
[19] Z. Xiong, A. D. Liveris, and S. Cheng, \Distributed source coding for sensor networks,"
IEEE Signal Processing Mag., vol. 21, no. 5, pp. 80{94, Sept. 2004.
[20] G. Mergen and L. Tong, \Sensor-fusion center communications over multiaccess fad-
ing channels," in Proc. of International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Philadelphia, PA, 2005.
[21] ||, \Type based estimation over multiaccess channels," IEEE Trans. Signal Process-
ing, vol. 54, no. 2, pp. 613{626, Feb. 2006.
[22] K. Liu and A. M. Sayeed, \Optimal distributed detection strategies for wireless sen-
sor networks," in Proc. on the 42nd Annual Allerton Conference on Communications,
Control and Computing, Monticello, IL, Oct. 2004.
[23] ||, \Asymptotically optimal decentralized type-based detection in wireless sensor net-
works," in Proc. of International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Montreal, Canada, May 2004, pp. 873{876.
[24] Y.-W. Hong, A. Scaglione, and P. K. Varshney, \A communication architecture for
reaching the consensus in decision for a large network," in Proc. of IEEE Workshop on
Statistical Signal Processing (SSP), Paris, France, 2005.
[25] P. F. Swaszek and P. Willett, \Parley as an approach to distributed detection," IEEE
Trans. Aerosp. Electron. Syst., vol. 31, no. 1, pp. 447{457, Jan. 1995.
[26] M. G. Rabbat, R. D. Nowak, and J. A. Bucklew, \Generalized consensus computation
in networked systems with erasure links," Proc. of SPAWC, New York, NY, June 2005.
[27] D. S. Scherber and H. C. Papadopoulos, \Locally constructed algorithms for distributed
computations in ad-hoc networks," Proc. of IEEE and ACM International Symposium
on Information Processing in Sensor networks (IPSN), Berkeley, CA, Apr. 2004.
[28] L. Xiao and S. Boyd, \Fast linear iterations for distributed averaging," Systems and
Control Letters, vol. 53, no. 1, pp. 65{78, Sept. 2004.
[29] J. N. Tsitsiklis and M. Athans, \Convergence and asymptotic agreement in distributed
decision problems," IEEE Trans. Automat. Contr., vol. AC-29, no. 1, 1984.
[30] R. Dorfman, \The detection of defective members of large population," The Annals of
Mathematical Statistics, vol. 14, no. 4, pp. 436{440, Dec. 1943.
[31] M. Sobel and P. A. Groll, \Group testing to eliminate e±ciently all defectives in a
binomial sample," The Bell System Technical Journal, vol. 38, pp. 1179{1253, Sept.
1959.
[32] T. Berger, N. Mehravari, D. Towsley, and J. Wolf, \Random multiple-access commu-
nication and group testing," IEEE Trans. Commun., vol. 32, no. 7, pp. 769{779, July
1984.
[33] L. H. P. Chen and M. Sobel, \Entropy-based optimal group testing procedures," Prob-
ability in the Engineering and Informational Sciences, vol. 1, pp. 497{509, 1987.
[34] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, \On the construction of energy-
e±cient broadcast and multicast trees in wireless networks," in IEEE Proceedings on
INFOCOM, vol. 2, 2000, pp. 585{594.
[35] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, \The broadcast storm problem in a
mobile ad hoc network," ACM Wireless Networks, vol. 8, pp. 153{167, Mar. 2002.
[36] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, \Energy-e±cient commu-
nication protocol for wireless microsensor networks," in Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences, Jan. 2000.
[37] Q. Tian and E. J. Coyle, \Optimal distributed detection in clustered wireless sensor
networks," IEEE Trans. Signal Processing, vol. 55, no. 7, pp. 3892{3904, July 2007.