研究生: |
施奇 Shih, Chih |
---|---|
論文名稱: |
以(LaSr)MO3(M=Co, Mn)為電化學雙電池 之陰極材料行二氧化硫及氮氧化物分解 之研究 A study of (LaSr)MO3(M=Co, Mn) as the cathode material of electrochemical double cell for the decomposition of sulfur dioxide and nitrogen oxides |
指導教授: |
黃大仁
Huang, Ta-Jen |
口試委員: |
黃大仁
Ta-Jen Huang 呂世源 Shih-Yuan Lu 竇維平 Wei-Ping Dow |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 脫硝 、脫硫 |
外文關鍵詞: | deNOx, deSO2 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
交通運輸以及工廠鍋爐一直以來都是氮氧化物(NOx)以及二氧化硫(SO2)排放的主要來源,然而在空氣汙染亦趨嚴重的情況下,各國政府對於廢氣排放的標準更加嚴格。在現今的處理技術,氮氧化物以及二氧化硫皆必須使用大量的還原劑與之反應,不僅耗費大量設備成本且有二次汙染的疑慮,然而以實驗室所發展之電化學雙電池(Electrochemical double cell,EDC),利用陰極材料與陽極材料之間產生的電動勢(Electromotive force,EMF)使氮氧化物和二氧化硫在觸媒表面上進行分解反應以達到減排之效果。
以鈣鈦礦結構(La0.8Sr0.2)0.95MnO3-δ(LSM)以及La0.6Sr0.4CoO3-δ(LSC)搭配具有導氧離子性質之材料Ce0.9Gd0.1O1.95(GDC)做為EDC之陰極材料,以氮氣、氧氣、一氧化氮、二氧化硫、二氧化碳以及水等做為氣體之成分去模擬汽機車廢氣或是工業廢氣。藉由氮氧化物以及二氧化硫濃度之間的調變,可以進一步了解此二種材料對於NOx以及SO2的催化活性。本研究以LSC-GDC以及LSM-GDC作為EDC的陰極材料,而結果顯示LSC對於氮氧化物的處理有更好的效果。LSM則對於二氧化硫的分解表現較LSC為更突出。
Since the transportation as well as the factory boiler has been the main emission sources of nitrogen oxides(NOx) and sulfur dioxide (SO2), governments around the world adopt strict standards because of serious cases in air pollution. In today's processing technology, large amounts of reducing agent must be used, not only consumes the massive equipment cost but also has the secondary pollution concerns. The development of Electrochemical double cell(EDC) in our lab using Electromotive force(EMF) between cathode and anode to make NOx and SO2 decomposing on the catalyst surfaces in order to achieve emission reduction.
Perovskite structure (La0.8Sr0.2) 0.95MnO3-δ (LSM) and La0.6Sr0.4CoO3-δ (LSC) with oxygen ion conductivity material Ce0.9Gd0.1O1.95 (GDC) as EDC's cathode material, nitrogen, oxygen, nitric oxide, sulfur dioxide, carbon dioxide and water as a component gases to simulate car exhaust or industrial emissions. By modulating the concentration of nitrogen oxides and sulfur dioxide between, we can learn more about these two kinds of materials for the catalytic activity of the reactants. In this study, we use LSC-GDC and LSM-GDC as the cathode of EDC,and the result show that LSC has a better activity on NOx while LSM has a better performance than LSC on SO2.
1. Roy, M.S. Hegde, G. Madras, Catalysis for NOx abatement. Applied Energy, 2009. 86(11): p.2283–2297.
2. Thibault-Starzyk, F., E. Seguin, S. Thomas, M. Daturi, H. Arnolds, D. A. King, Real-Time Infrared Detection of Cyanide Flip on Silver-Alumina NOx Removal Catalyst. Science, 2009. 324(5930): p.1048-1051.
3. Zhu, J. and A. Thomas, Perovskite-type mixed oxides as catalytic material for NO removal. Applied Catalysis B: Environmental, 2009. 92(3-4): p. 225-233.
4. H.L.Fang,H.F.M. DaCosta,Urea thermolysis and NOx reduction with and without SCR catalysts.Applied.Catalysis.B:Environmental,2003. 46(1): p. 17-34.
5. Matsumoto, S.i,. Recent advances in automobile exhaust catalysts. Catalysis Today, 2004.90(3-4):p. 183–190.
6. Kammer, K., Electrochemical DeNOx in solid electrolyte cells—an overview. Applied Catalysis B: Environmental, 2005. 58(1-2): p. 33-39.
7. Hansen, K.K.,Solid state electrochemical DeNOx—An overview. Applied Catalysis B: Environmental, 2010. 100(3-4): p. 427-432.
8. Huang, T.-J, Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy & Environmental Science, 2011. 4(10):p. 4061-4067.
9. Huang, T.-J. and I.-C. Hsiao, Nitric oxide removal from simulated lean-burn engine exhaust using a solid oxide fuel cell with V-added (LaSr)MnO3 cathode. Chemical Engineering Journal, 2010. 165(1): p. 234-239.
10. Huang, T.-J., C.-Y. Wu, and C.-C. Wu, Lean-burn NOx emission control via simulated stack of solid oxide fuel cells with Cu-added (LaSr)MnO3 cathodes. Chemical Engineering Journal, 2011. 172(2-3): p. 665-670.
11. 行政院環境保護署 ,台灣酸雨資訊網,2013酸雨概況。
12. 香港環境保護署,2013香港空氣汙染物排放清單。
13. 台灣電力公司,燃煤發電機組空污處理流程。
14. 周建良,以La0.58Sr0.4Co0.2Fe0.8O3-δ為固態氧化物燃料電池陰極材料之研究,國立清華大學化工所 博士論文,民國九十八年。
15. John B. Goodenough, Ceramic technology-Oxide-ion conductors by design.Nature ,2000.404:823-823.
16. Xu, N.,H. Zhao, X. Zhou, W. Wei, X. Lu, W. Ding, and F. Li, Dependence of critical radius of the cubic perovskite ABO3 oxides on the radius of A- and B-site cations. International Journal of Hydrogen Energy, 2010. 35(14): p. 7295-7301.
17. Mizusaki, J., H. Tagawa, T. Saito, K. Kamitani, T. Yamamuma, K. Hirano, S.Ehara, T. Takagi, T. Hikita, M. Ippommatsu, S. Nakagawa, and K. Hashimoto, Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H2-H20 Atmospheres. Journal of the Electrochemical Society,1994. 141(8): p. 2129-2134.
18. Weber, A. and E. Ivers-Tiffée, Materials and concepts for solid oxide fuel cells (SOFCs)in stationary and mobile applications. Journal of Power Sources, 2004. 127(1-2): 273-283.
19. X.-Y. Fan, F.-M. Qiu, H.-S. Yang, W. Tian, T.-F. Hou, X.-B. Zhang, Selective catalytic reduction of NOX with ammonia over Mn–Ce–OX/TiO2-carbon nanotube composites. Catalysis Communications, 2011. 12 (14): 1298–1301.
20. F. Tietz, I. Arul Raj , M. Zahid, D. Sto¨ ver, Electrical conductivity and thermal expansion of La0.8Sr0.2(Mn,Fe,Co)O3-y perovskites. Solid State Ionics, 2006. 177: 1753 – 1756.
21. T. Sato, N. Todo, M. Kurita, H. Hagiwara, A. Ueno, A. Nishijima,and Y. Kiyozumi , THE DEVELOPMENT OF CATALYSTS FOR SIMULTANEOUS CONTROL OF NOx AND SOx IN FLUE GASES. Chemistry Letters, 1978. p:1073-1076.
22. 江德一,以電化學雙電池/電觸媒蜂巢促進分解二氧化硫及氮氧化物至實用之研究,國立清華大學化工所 博士論文,民國一百零三年。