研究生: |
許馨月 Hsu, Hsin-Yueh |
---|---|
論文名稱: |
正交分頻多工系統於六十秭赫室內通道之效能分析 Performance Analysis of OFDM Systems over 60 GHz Indoor Channels |
指導教授: |
趙啟超
Chao, Chi-chao |
口試委員: |
蘇育德
Su, Yu Ted 林茂昭 Lin, Mao-Chao 楊谷章 Yang, Guu-Chang 趙啟超 Chao, Chi-chao |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 六十秭 、正交分頻多工系統 |
外文關鍵詞: | 60 GHz, Orthogonal Frequency Division Multiplexing Systems |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今,有許多應用需要非常高的資料傳輸速率,然而當代科技尚無法支援如此高傳輸速率的需求,特別是針對室內無限通訊系統。為了要在室內通道達到高資料傳輸速率,六十秭技術已被發現是最具有前瞻性的技術之一。六十秭技術有許多優點,包括超高資料傳輸速率、在全球都有大量並且無需執照的頻寬、較少其他系統干擾等。為了要分析六十秭通訊系統,目前已提出一些新的通道模型如802.15.3c通道模型以符合六十秭通道的特點,主要是根據量測到的電磁訊號去定義出來的,此室內通道模型在空間與時間上都具有群集的特色。除此之外,系統方面如正交分頻多工系統 (Orthogonal Frequency Division Multiplexing),因其卓越的特性,如較簡單的通道等化以及高頻譜效率,已被建議用於六十秭室內通道中。
然而,在目前已知的研究中,多是依據模擬或量測的資料,關於正交分頻多工系統於六十秭室內通道的實用分析還嫌欠缺。在本論文中,利用延伸密度函數 (Extended Density Function),我們推導了在六十秭通道上隨機到來路徑的平均效應,推導分析也包括一個特別存在於六十秭室內通道中,在空間維度上的隨機效應。然後根據時間、到來路徑,以及空間維度上平均效應的影響,我們計算出在實際系統假設下正交分頻多工系統的確切訊號干擾雜訊比 (Signal-to-Interference-Plus-Noise Ratio, SINR)。最後,基於所得到的分析結果,我們也做了一些針對空間上的討論,以及根據分析結果觀察得到的實用法則,可套用在不同的六十秭室內通道環境中。
Many applications nowadays require high data rates, while the contemporary technology
cannot support such high rate demand, especially for indoor wireless communications. To
achieve a high data rate for indoor channels, 60 GHz technology has emerged as one of the
most promising candidates. There are many advantages in 60 GHz technology, such as very
high achievable data rates, huge unlicensed bandwidth available worldwide, and little intersystem
interference. In addition, systems such as orthogonal frequency division multiplexing
(OFDM) systems have been proposed for the 60 GHz indoor channels due to the remarkable
properties, such as simpler channel equalization and high spectral efficiency.
Yet practical analysis for OFDM systems over 60 GHz indoor channels is still rare in the literature. In this thesis, by the aid of the extended density function, the average effect of the random arrivals is derived and a special spatial domain randomness existing in the 60 GHz indoor channels is also included. An exact signal-to-interference-plus-noise ratio (SINR) analysis of OFDM systems over 60 GHz indoor channels is then provided. Finally, some discussions, mainly focused on the spatial domain, based on the SINR analysis are given.
[1] R. C. Daniels and R. W. Heath, “60 GHz wireless communications: Emerging requirements and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41–50, Sep. 2007.
[2] P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Commun. Mag., vol. 40, no. 1, pp. 140-147, Jan. 2002.
[3] N. Guo, R. C. Qiu, S. S. Mo, and K. Takahashi, “60-GHz millimeter-wave radio: Principle, technology, and new results,” EURASIP J. Wireless Commun. and Networking, vol. 2007, no. 1, pp. 1–8, Jan. 2007.
[4] S.-K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges,” EURASIP J. Wireless Commun. and Networking, vol. 2007, no. 1, pp. 1–10, Jan. 2007.
[5] “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” Federal Comunications Commission, FCC First Report and Order, ET-Docket 98-153, Feb. 2002.
[6] C. Yiu and S. Singh, “Empirical capacity of mmwave WLANs,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1479–1487, Oct. 2009.
[7] M. Park and P. Gopalakrishnan, “Analysis on spatial reuse and interference in 60-GHz wireless networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1443–1452, Oct.
2009.
[8] A. Seyedi and D. Birru, “On the design of a multi-gigabit short-range communication system in the 60GHz band,” in Proc. IEEE Consumer Commun. and Networking Conf.,
Las Vegas, NV, Jan. 2007, pp. 1–6.
[9] O. Hoffmann, R. Kays, and R. Reinhold, “Coded performance of OFDM and SC PHY of IEEE 802.15.3c for different FEC types,” in Proc. IEEE Global Commun. Conf.
Workshops, Honolulu, HI, Dec. 2009, pp. 1–3.
[10] H. Singh, S.-K. Yong, J. Oh, and C. Ngo, “Principles of IEEE 802.15.3c: Multi-gigabit millimeter-wave wireless PAN,” in Proc. Int. Comput. Commun. and Networks Conf.,
San Francisco, CA, Aug. 2009, pp. 1–6.
[11] J. Wang, Z. Lan, C.-S. Sum, C.-W. Pyo, J. Gao, T. Baykas, A. Rahman, R. Funada, F. Kojima, I. Lakkis, H. Harada, and S. Kato, “Beamforming codebook design and performance evaluation for 60Ghz wideband WPANs,” in Proc. IEEE 70th Veh. Technology Conf., Anchorage, AK, Sep. 2009, pp. 1–6.
[12] X. Zhu, A. Doufexi, and T. Kocak, “On the performance of IEEE 802.15.3c millimeterwave WPANs: PHY and MAC,” in Proc. 6th Conf. Wireless Advanced, London, UK, Jun. 2010, pp. 1–6.
[13] S.-K. Yong, et al., “TG3c channel modeling sub-committee final report,” IEEE doc.: IEEE 802.15-07-0584-01-003c, Sep. 2010.
[14] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Sel. Areas Commun., vol. 5, no. 2, pp. 128–137, Feb. 1987.
[15] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel,”
IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 347–360, Mar. 2000.
[16] A. F. Molisch, et al., “IEEE 802.15.4a channel model - final report,” IEEE doc.: IEEE 802.15-04-0662-02-004a, 2005.
[17] J.-Y. Chang, “Performance analysis of multiband OFDM systems over generic ultrawideband channels,” M.S. thesis, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan, 2008.
[18] J.-Y. Chang, W.-D. Wu, and C.-C. Chao, “An analytical framework for ultra-wideband communications over IEEE 802.15.4a channels,” in Proc. IEEE Int. Symp. Inform. Theory, Toronto, Canada, Jul. 2008, pp. 2757–2761.
[19] W.-D. Wu, C.-C. Lee, C.-H. Wang, and C.-C. Chao, “Signal-to-interference-plusnoise ratio analysis for direct-sequence ultra-wideband systems in generalized Saleh-
Valenzuela channels,” IEEE J. Sel. Topics Signal Process., vol. 1, no. 3, pp. 483–497, Oct. 2007.
[20] W.-D. Wu, C.-H. Wang, C.-C. Chao, and K. Witrisal, “On parameter estimation for ultra-wideband channels with clustering phenomenon,” in Proc. IEEE 68th Veh. Tech-
nology Conf., Calgary, AB, Canada, Sep. 2008, pp. 1–5.
[21] E. P. C. Kao, An Introduction to Stochastic Processes. Belmont, CA: Duxbury Press, 1997.
[22] T. Salim, J. Devlin, and J. Whittington, “Effects of phase quantization on digital beamforming for HF phased array radar,” in Proc. IEEE 9th Int. Multitopic Conf., Karachi, Pakistan, Dec. 2005, pp. 1–6.