簡易檢索 / 詳目顯示

研究生: 曾喬委
Tseng, Chiao-Wei
論文名稱: 在五環素有機薄膜電晶體中崁入有機以及金屬奈米粒子:薄膜結構和雙穩態電性之研究
Field effect transistor with pentacene films embedding organic and metallic nanoclusters: structure and electric bistability study
指導教授: 陶雨台
Tao, Yu-Tai
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 130
中文關鍵詞: 有機薄膜電晶體雙穩態
外文關鍵詞: Organic field effect transistor, electric bistability
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    Pentacene films deposited on a silica surface decorated with gold nanoparticles (Au-NPs) were characterizedand used as the active material in the fabrication of a transistor/memory device. The crystallinity and packing orientation of the deposited films are critically dependent on the surface characters of the nanoparticles, which can be tuned by a self-assembled monolayer (SAM) of organic thiolate on the nanoparticles. High performance field-effect transistors based on the Au-NPs-embedded pentacene films can be prepared if the nanoparticles are made “hydrophobic” as well as “oleophobic” by appropriate SAMs. Electrical bistability was observed in these devices. That is, different I-V traces are followed when the source/drain current was measured at a constant bias with the gate bias swept from positive bias toward negative direction or from negative bias toward positive direction. The threshold voltage shifts of the two traces (defined as the memory window) depend on the size and surface modification of the Au-NPs. The structural characterization and electronic characteristics of the devices are detailed. The charge trapping/storing (of both holes and electrons) property of the Au-NPs is suggested to be responsible for the electric bistability. Similar study with the incorporation of aluminum nanoparticles (Al-NPs) into the conduction channel of a pentacene-based field effect transistor was carried out. In this system, Al-NPs capped with SAMs of organic phosphonic acids serve as charge storage centers, with mainly hole carriers trapped. The memory window and retention characteristics of the device depend on the character and chain length of SAM-forming molecules. The results of detailed programming and erasing operations are discussed.
    In addition, embedding of organic molecules into pentacene film as the channel material was also studied. Polydiacetylenes, which can be prepared by topochemical polymerization of diacetylenic monomers, are studied as charge storage vehicles in pentacene film. Composite films of pentacene and poly(10,12-pentacosadiynoic acid) were prepared and used as the active channel material in a field-effect transistor. The transistors exhibited a high field-effect mobility as well as a large I-V hysteresis as a function of gate bias history. Detailed film structure analyses and correlation with the transistor/memory property are provided. Several organic metal complexes were also studied as charge traps at the semiconductor and dielectric interface. The crystallinity and packing orientation of pentacene film are strongly dependent on the presence of these metal complexes. The field-effect behavior and memory characteristics such as the memory window, device responses, and retention ability of the devices were further investigated.


    Contents 1. Introduction…………………………...…………………………1 1.1 Principle of Organic Field Effect Transistor……………………...1 1.2 The effect of interface between metal and semiconductor……….5 1.3 The effect of interface between semiconductor/dielectric………12 1.4 Organic memory elements………………………………………20 1.5 Polydiacetylene………………………………………………….23 2. Motivation……………………………………………………...30 3. Experimental procedures……………………………………...32 3.1 Preparation of the SAM/Au-NPs………………………………..32 3.2 Preparation of the SAM/Al-NPs………………………………...32 3.3 OTS monolayer preparation…………………………………….33 3.4 Preparation of the PDA film…………………………………….33 3.5 Preparation of the organic metal complex nanoclusters………...34 3.6 Fabrication of field-effect transistor/memory device…………...34 3.7 Analysis instruments…………………………………………….35 4. Results and Discussion………………………………………...37 4.1 Thin film transistors with pentacene films embedding SAM- modified gold nanoparticles…………………………………...37 4.1.1 Gold nanoparticles characteristics…………………….37 4.1.2 Pentacene film structure characteristics………………38 4.1.3 Electric property………………………………………49 4.1.4 Summary……………………………………………...58 4.2 Thin film transistors with pentacene films embedding SAM- modified aluminum nanoparticles……………………………..60 4.2.1 Film structure characteristics…………………………60 4.2.2 Electric Property……………………………………...63 4.2.3 Summary……………………………………………..72 4.3 Thin film transistors with pentacene films embedding poly(10,12-pentacosadiynoic acid), polyPDA clusters………...73 4.3.1 Characterization of the polyPDA film………………...73 4.3.2 Comparison of morphology for films of other organic Molecules…………………………………………….83 4.3.3 Characterization of pentacene films…………………..85 4.3.4 Electric property………………………………………91 4.3.5 Summary…………………………………………….107 4.4 Thin film transistors with pentacene film embedding metal complex nanoclusters………………………………………...109 4.3.1 Film structure characterization………………………110 4.3.2 Electric property……………………………………..113 4.3.3 Summary…………………………………………….119 5. Conclusion…………………………………………………….121 6. References……………………………………………………..123

    1 Feng, M.; Holonyak, N; Chan, R. Appl. Phys. Lett. 2004, 84, 1952.
    Street, R. A.; Salleo, A. Appl. Phys. Lett. 2002, 81, 2887.
    Lei, C. H.; Das, A.; Elliott, M.; Macdonald, J. E.; Turner, M. L. Synth. Met. 2004, 145, 217.
    Zaumseil J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296-1323.
    Dimitrakopoulos, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A,; Shaw, J. M. Science, 1999, 283, 822.
    Lee, J.; Kim, J. H.; Im, S. Appl. Phys. Lett. 2003, 83, 2689.
    Bartic, C.; Jansen, H.; Campitelli, A.; Borghs, S. Org. Electron. 2002, 3, 65.
    Zhang, Q. M.; Bharti, V.; Zhao, X. Science, 1998, 280, 2101.
    Huang, C; Zhang, Q. M. Appl. Phys. Lett. 2003, 82, 3502.
    Bai, Y.; Cheng, Z. Y.; Bharti, V.; Xu, H. S.; Zhang, Q. M. Appl. Phys. Lett. 2000, 76, 3804.
    Crispin, X.; Geskin, V.; Grispin, A.; Cornil, J.; Lazzaroni, R.; Salaneck, W. R.; Bredas, J. L. J. Am. Chem. Soc. 2002, 124, 8131.
    Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P. Phys. Rev. B 1996, 54, 14321.
    Alloway, D. M.; Hofmann, M.; Smith, D. L.; Gruhn, N. E.; Graham, A. L.; Colorado, R.; Wysocki, V. H.; Lee, T. R.; Lee, P. A.; Armstrong, N. R. J. Phys. Chem. B 2003, 107, 11690.
    Boer, B. D.; Hadipour, A.; Mandoc, M. M.; Woudenbergh, T. V.; Blom, P. W. M. Adv. Mater. 2005, 17, 621.
    Asadi, K.; Wu, Y.; Gholamrezaie, F.; Rudolf, P.; Blom, P. W. M. Adv. Mater. 2009, 21, 4109.
    Hu, W. S.; Tao, Y. T.; Hsu, Y. J.; Wei, D. H.; Wu, Y. S. Langmuir 2005, 21, 2260.
    Stoliar, P.; Kshirsagar, R.; Massi, M.; Annibale, P.; Albonetti, C.; Leeuw, D. M. D.; Biscarini, F. J. Am. Chem. Soc. 2007, 129, 6477.
    Yamamoto, H.; Waldeck, D. H. J. Phys. Chem. B 2002, 106, 7469.
    Bock, C.; Pham, D. V.; Kunze, U.; Kafer, D.; Witte, G.; Woll, C. J. App. Phys. 2006, 100, 114517.
    Tulevski, G. S.; Miao, Q.; Afzali, A.; Graham, T. O.; Kagan, C. R.; Nuckolls, C. J. Am. Chem. Soc. 2006, 128, 1788.
    Di, C. A.; Wei, D.; Yu, G.; Liu, Y.; Guo, Y.; Zhu, D. Adv. Mater. 2008, 20, 3289.
    Shtein, M.; Mapel, J.; Benziger, J. B.; Forrest, S. R. Appl. Phys. Lett. 2002, 81, 268.
    Yang, S. Y.; Shin, K.; Park, C. E. Adv. Funct. Mater. 2005, 15, 1806.
    Dimitrakopoulos, C. D.; Brown, A. R.; Pomp, A. J. App. Phys. 1996, 80, 2501.
    Yagi, I.; Tsukagoshi, K.; Aoyagi, Y. Appl. Phys. Lett. 2005, 86, 103502.
    Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature, 2005, 434, 194.
    Angst, D. L.; Simmons, G. W. Langmuir 1991, 7, 2236.
    Wasserman, S. R.; Tao, Y. T.; Whitesides, G. M. Langmuir 1989, 5, 1074.
    Torikai, A.; Ohno, M.; Fueki, K. J. Appl. Polym. Sci. 1990, 41, 1023.
    Benson, N.; Schidleja, M.; Melzer, C.; Schmechel, R.; Seggern, H. V. Appl. Phys. Lett. 2006, 89, 182105.
    Cho, J. H.; Lee, D. H.; Shin, H. S.; Pattanayek, S. K.; Ryu, C. Y.; Cho, K. Langmuir 2004, 20, 11499.
    Lee, H. S.; Kim, D. H.; Cho, J. H.; Hwang, M.; Jang, Y.; Cho, K. J. Am. Chem. Soc. 2008, 130, 10556.
    Virkar, A.; Mannsfeld, S.; Oh, J. H.; Toney, M. F.; Tan, Y. H.; Liu, G. Y.; Scott, C.; Miller, R.; Bao, Z. Adv. Funct. Mater. 2009, 19, 1962.
    Francis, R.; Louche, G.; Duran, R. S. Thin Solid Film, 2006, 513, 347.
    Hanson, E. K.; Schwartz, J.; Nickel, B.; Koch, N.; Danisman, M. F. J. Am. Chem. Soc. 2003, 125, 16074.
    Hofer, R.; Textor, M.; Spencer, N. D. Langmuir 2001, 17, 4014.
    Hill, I. G.; Weinert, C. M.; Kreplak, L.; Zyl, B. P. V. Appl. Phys. A 2009, 95, 81.
    McDermott, J. E.; McDowell, M.; Hill, I. G.; Hwang, J.; Kahn, A.; Bernasek, S. L.; Schwartz, J. J. Phys. Chem. A 2007, 111, 12333.
    Takeya, J.; Nishikawa, T.; Takenobu, T.; Kobayashi, S.; Iwasa, Y. Appl. Phys. Lett. 2004, 85, 5078.
    Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Nature Mater. 2004, 3, 317.
    Huang, C.; Katz, H. E.; West, J. E. Langmuir 2007, 23, 13223.
    Yang, Y.; Ouyang, J.; Ma, L.; Tseng, R. J. H.; Chu, C. W. Adv. Funct. Mater. 2006, 16, 1001−1014.
    Scott, J. C.; Bozano, L. D. Adv. Mater. 2007, 19, 1452.
    Baek, S.; Lee, D.; Kim, J.; Hong, S. H.; Kim, O.; Ree, M. Adv. Funct. Mater. 2007, 17, 2637.
    Lee, J. S.; Kim, Y. M.; Kwon, J. H.; Shin, H.; Sohn, B. H.; Lee, J. Adv. Mater. 2009, 21, 178.
    Naber, R. C. G.; Tanase, C.; Blom, P. W. M.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; Leeuw, D. M. D. Nature Mater. 2005, 4, 243.
    Kang, S. J.; Park, Y. J.; Bae, I.; Kim, K. J.; Kim, H. C.; Bauer, S.; Thomas, E. L.; Park, C. Adv. Funct. Mater. 2009, 19, 2812.
    Lee, K. H.; Lee, G.; Lee, K.; Oh, M. S.; Im, S.; Yoon, S. M. Adv. Mater. 2009, 21, 4287.
    Naber, R. C. G.; Asadi, K.; Blom, P. W. M.; Leeuw, D. M. D.; Boer, B. D. Adv. Mater. 2009, 21, 1.
    Said, E.; Crispin, X.; Herlogsson, L.; Elhag, S.; Robinson, N. D.; Berggren, M. Appl. Phys. Lett. 2006, 89, 143507.
    Herlogsson, L.; Crispin, X.; Robinson, N. D.; Sandberg, M.; Hagel, O. J.; Gustafsson, G.; Berggren, M. Adv. Mater. 2007, 19, 97.
    Larsson, O.; Said, E.; Berggren, M.; Crispin, X. Adv. Funct. Mater. 2009, 19, 3334.
    Wu, W.; Zhang, H.; Wang, Y.; Ye, S.; Guo, Y.; Di, C.; Yu, G.; Zhu, D.; Liu, Y. Adv. Funct. Mater. 2008, 18, 2593.
    Leong, W. L.; Lee, P. S.; Lohani, A.; Lam, Y. M.; Chen, T.; Zhang, S.; Dodabalapur, A.; Mhaisalkar, S. G. Adv. Mater. 2008, 20, 2325.
    Faber, H.; Burkhardt, M.; Jedaa, A.; Ka¨lblein, D.; Klauk, H.; Halik, M. Adv. Mater. 2009, 21, 3099.
    Wegner, G. Z. Naturforsch 1969, 24, 824.
    Schmidt, G. M. J. Solid state photochemistry. Weinheim: Verlag Chemie 1976.
    Batchelder, D. N.; Evans, S. D.; Freeman, T. L.; Haussling, L.; Ringsdorf, H.; Wolf, H. J. Am. Chem. Soc. 1994, 116, 1050.
    Chan, K. C.; Kim, T.; Schoer, J. K.; Crooks, R. M. J. Am. Chem. Soc. 1995, 117, 5875.
    Kim, T.; Chan, K. C.; Crooks, R. M. J. Am. Chem. Soc. 1997, 119, 189.
    Menzel, H.; Mowery, M. D.; Cai, M.; Evans, C. E. Macromolecules 1999, 32, 4343.
    Menzel, H.; Horstmann, S.; Mowery, M. D.; Cai, M.; Evans, C. E. Polymer 2000, 41, 8113.
    Wenzel, M.; Atkinson, G. H. J. Am. Chem. Soc. 1989, 111, 6123.
    Hofmann, U. G.; Peltonen, J. Langmuir 2001, 17, 1518.
    Lee, D. C.; Sahoo, S. K.; Cholli, A. L.; Sandman, D. J. Macromolecules 2002, 35, 4347.
    Chance, R. R. Macromolecules 1980, 13, 396.
    Yoon, J.; Chae, S. K.; Kim, J. M. J. Am. Chem. Soc. 2007, 129, 3038.
    Carpick, R. W.; Sasaki, D. Y.; Burns, A. R. Langmuir 2000, 16, 1270.
    Tomioka, Y.; Tanaka, N.; Imazeki, S. J. Chem. Phys. 1989, 91, 5694.
    Charych, D.; Nagy, J. D.; Spevak, W.; Bednarski, M. Science 1993, 261, 585.
    Huilin, Z.; Weixing, L.; Shufang, Y.; Pingsheng, H. Langmuir 2000, 16, 2797.
    Lifshitz, Y.; Golan, Y.; Konovalov, O.; Berman, A. Langmuir 2009, 25, 4469.
    Ahn, D. J.; Kim, J. M. Acc. Chem. Res. 2008, 41, 805.
    Jelinek, R.; Okada, S.; Norvez, S.; Charych, D. Chem. Biol. 1998, 5, 619.
    Kolusheva, S.; Boyer, L.; Jelinek, R. Nat. Biotechnol. 2000, 18, 225.
    Yoon, B.; Lee, S.; Kim, J. M. Chem. Soc. Rev. 2009, 38, 1958-1968.
    Ahn, D. J.; Lee, S.; Kim, J. M. Adv. Funct. Mater. 2009, 19, 1483.
    Kim, J. M.; Lee, J. S.; Choi, H.; Sohn, D.; Ahn, D. J. Macromolecules 2005, 38, 9366.
    Lee, L. Y.; Aleshin, A. N.; Kim, D. W.; Lee, H. J.; Kim, Y. S.; Wegner, G.; Enkelmann, V.; Roth, S.; Park, Y. W. Synthetic metals 2005, 152, 169.
    Wang, Y.; Yang, K.; Wang, X.; Nagarajan, R.; Samuelson, L. A.; Kumar, J. Org. Lett. 2006, 7, 546.
    Nishide, J. I.; Oyamada, T.; Akiyama, S.; Sasabe, H.; Adachi, C. Adv. Mater. 2006, 18, 3120.
    Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
    Wu, K. W.; Tao, Y. T.; Huang, H. W. Appl. Phys. Lett. 2007, 90, 241104.
    Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103.
    Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y. T.; Parikh, A. N.; Nuzzo, R. G. J. Am. Chem. Soc. 1991, 113, 7152.
    Pellerite, M. J.; Dunbar, T. D.; Boardman, L. D.; Wood, E. J. J. Phys. Chem. B 2003, 107, 11726.
    Hoque, E.; DeRose, J. A.; Kulik, G.; Hoffmann, P.; Mathieu, H. J.; Bhushan, B. J. Phys. Chem. B 2006, 110, 10855.
    Sagiv, J. J. Am. Chem. Soc. 1980, 102, 92.
    Ma, L. P.; Liu, J.; Yang, Y. Appl. Phys. Lett. 2002, 80, 2997.
    Weng, S. Z.; Hu, W. S.; Kuo, C. H.; Tao, Y. T., Fan, L. J.; Yang, Y. W. Appl. Phys. Lett. 2006, 89, 172103.
    Fritz, S. E.; Martin, S. M.; Frisbie, C. D.; Ward, M. D.; Toney, M. F. J. Am. Chem. Soc. 2004, 126, 4084.
    Hu, W. S.; Tao, Y. T.; Chen, Y. F.; Chang, C. S. Appl. Phys. Lett. 2008, 93, 053304.
    Briseno, A. L.; Mannsfeld, S. C. B.; Lu, X.; Xiong, Y.; Jenekhe, S. A.; Bao, Z.; Xia, Y. Nano. Lett. 2007, 7, 668.
    Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
    Hung, M. C.; Wu, K. Y.; Tao, Y. T.; Huang, H. W. Appl. Phys. Lett. 2006, 89, 203106.
    Wu, K. Y.; Szu-Yen Yu; Tao, Y. T. Langmuir 2009, 25, 6232.
    Kim, J. M.; Lee, Y. B.; Chae, S. K.; Ahn, D. J. Adv. Funct. Mater. 2006, 16, 2103.
    Narita, Y.; Tadokoro, T.; Ikeda, T.; Saiki, T.; Mononobe, S.; Ohtsu, M. Appl. Spectrosc. 1998, 52, 1141.
    Galiotis, C.; Young, R. J.; Batchelder, D. N. J. Mater. Sci. Let. 1983, 2, 263.
    Ulman, A.; Eilers, J. E.; Tillman, N. Langmuir, 1989, 5, 1147.
    Tillman, N.; Ulman, A.; Schildkraut, J. S.; Penner, T. L. J. Am. Chem. Soc. 1988, 110, 6136.
    Knipp, D.; Street, R. A.; Völkel, A.; Ho, J. J. App. Phys. 2003, 93, 347.
    Di, C. A.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Sun, X. N.; Zheng, J.; Wen, Y. G.; Wang, Y.;Wu, W. P.; Zhu, D. B.. Phys. Chem. Chem. Phys. 2009, 10, 1039.
    Unpublished results.
    Weidkamp, K. P.; Tromp, R. M.; Hamers, R. J. J. Phys. Chem. C 2007, 111, 16489.
    Drummy, L. F.; Martin, D. C. Adv. Mater. 2005, 17, 903.
    Cheng, H. L.; Mai, Y. S.; Chou, W. Y.; Chang, L. R.; Liang, X. W. Adv. Funct. Mater. 2007, 17, 3639.
    Heim, T.; Lmimouni, K.; Vuillaume, D. Nano Lett. 2004, 4, 2145.
    Singh, T. B.; Meghdadi, F.; Gu¨nes, S.; Marjanovic, N.; Horowitz, G.; Lang, P.; Bauer, S.; Sariciftci, N. S. Adv. Mater. 2005, 17, 2315.
    Chen, L.; Ludeke, R.; Cui, X.; Schrott, A. G.; Kagan, C. R.; Brus, L. E. J. Phys. Chem. B 2005, 109, 1834.
    Park, C. B.; Yokoyama, T.; Nishimura, T.; Kita, K.; Toriumi, A. Jpn. J. Appl. Phys. 2008, 47, 3189.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE