簡易檢索 / 詳目顯示

研究生: 李岳霖
Lee, Yueh-Lin
論文名稱: 低暗電流、高響應度、及均勻光敏特性之磷化銦/砷化銦鎵系列短波紅外光偵測器
Low Dark Current, High Responsivity, and Uniform Photosensitivity of InP/InGaAs PIN Short-Wavelength-Infrared Photodiodes
指導教授: 吳孟奇
Wu, Meng-Chyi
何充隆
Ho, Chong-Long
口試委員: 王永和
Yeong-Her Wang
洪茂峰
Mau-Phon Houng
林清富
Ching-Fuh Lin
鄭克勇
Keh-Yung Cheng
謝光前
Hsieh, Kuang-Chien
劉埃森
Anthony Liu
何充隆
Chong-Long Ho
吳孟奇
Meng-Chyi Wu
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 141
中文關鍵詞: 磷化銦/砷化銦鎵響應度量子效率光敏特性氧化鎵鋅原子層沉積射頻濺鍍法氧化鎳蕭特基能障高度歐姆接觸透明導電型抗反射層
外文關鍵詞: InP/InGaAs, responsivity, quantum efficiency, photosensitivity, GZO, atomic layer deposition, RF-sputter, NiOx, Schottky barrier height, Ohmic contact, transparent-conducting AR coating
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文中,我們設計與製作平面型大面積之磷化銦/砷化銦鎵系列異質接面光偵測器元件,並結合不同抗反射層和二次吸收路徑反射結構,以增進元件之響應度、量子效率、及光敏特性。其中,抗反射層結構是由高低折射係數材料所組成,分別包括絕緣型氧化矽/氮化矽雙層、導電型氧化矽/氧化鎵鋅雙層、及導電型氧化矽/氧化鎵鋅/氧化鎳三層結構。而二次路徑反射結構則由金鍺合金所構成。
     為了製備n型氧化鎵鋅導電薄膜,我們採用化學氣相沉積相關之熱模式與電漿模式原子層沉積技術,以及物理氣相沉積機制之射頻濺鍍法等沉積方式。就原子層沉積技術而言,是以一層一層成長方式來形成三明治多層結構的氧化鎵鋅薄膜,且可藉由調變成長溫度和導入不同氧來源,以改善此薄膜特性。如此,可獲得3.8 x 10-3 Ω-cm的電阻率和3.4 x 1020 cm-3的載子濃度,並在可見光與紅外光範圍可得到高於90%的平均穿透率。就射頻濺鍍技術而言,其製備的氧化鎵鋅薄膜可得到2.9 x 10-3 Ω-cm的電阻率和3.6 x 1020 cm-3的載子濃度,然而,過低的光學穿透率使得它無法應用於短波長紅外光區域範圍。另一方面,p型氧化鎳導電薄膜可藉由電子束蒸鍍法並搭配氧氣環境的快速退火方式來製作完成。
     而利用射頻濺鍍與原子層沉積兩種技術,成長重摻雜的氧化鎵鋅薄膜於p型磷化銦/砷化銦鎵的結構上,其呈現出蕭特基接觸之特性,而此n型氧化鎵鋅/p型磷化銦接面存在之能障,能藉由二次鋅擴散步驟與採用氧化鎳嵌入層來降低能障高度,使之呈現歐姆接觸特性。經由二次快速熱鋅擴散製程,在p型磷化銦層之表面可得到高的鋅原子濃度(5-8 × 1018 cm-3)。為了探討其接觸特性表現,在p型磷化銦層上設計並建構一系列傳輸線法之結構,此外,由於接面能障高度扮演著一關鍵因素,可藉由導入氧化鎳嵌入層於n型氧化鎵鋅和p型磷化銦接面之間,以達到歐姆接觸特性。而金/鉻/氧化鎵鋅/氧化鎳接觸結構建立於鋅摻雜之p型磷化銦層上,在經過430℃時間180 sec的熱退火處理後,可獲得良好的歐姆接觸行為,以及3.07 × 10-4 Ω-cm2的特徵接觸電阻。如此,若在元件應用上,利用電漿模式原子層沉積技術成長透明導電的氧化鎵鋅層於磷化銦/砷化銦鎵系列光二極體,可有效改善元件之橫向電阻的問題,除此之外,氧化鎳層能進一步降低n型氧化鎵鋅和p型磷化銦接面之間的能障高度,達到元件優化的目的。
     氧化矽/氧化鎵鋅/氧化鎳三層抗反射結構呈現90%以上之平均光學穿透率及低於10%以下之反射率,而金鍺/金合金之背面反射鏡可呈現80%以上的光學反射率,如此,結合抗反射鍍膜層和二次路徑反射結構此兩項優點,可達到減少入射光的損耗與增加二次光學路徑的吸收,以此提升元件表現。藉由導入透明導電型抗反射層和二次路徑反射鏡,至平面型大面積之磷化銦/砷化銦鎵系列光偵測器元件之結構中,其元件可呈現的低暗電流密度為32.8 nA/cm2於-5 V偏壓下、高崩潰電壓達到-35V、內建電位約為1.65 eV,在1310 nm和1550 nm波長的光照射之下,可得到高的光響應度分別為0.93 A/W和1.09 A/W,且在1000 nm至1600 nm波長頻譜下,其高量子效率接近90%,截止波長大約落於1650 nm波長。搭配SiO2/GZO/NiOx導電型抗反射結構的光偵測器元件,以相對較高能量的光照射在不同元件吸光位置之下,其可呈現均勻的光敏性分布。


    In this dissertation, we report on the design of large-area planar InP/InGaAs/InP heterostructure p-i-n photodiodes (PIN-PDs) with various antireflective layer structures and double-path reflectors for the enhancement in the position sensitivity, device response, and quantum efficiency. The antireflection (AR) coating structure is composed of high and low refractive index materials, including the insulating type of SiO2/Si3N4 bi-layer, conducting type of SiO2/GZO bi-layer, and conducting type of SiO2/GZO/NiOx tri-layer. The double-path reflector consists of AuGe-based alloys.
     The thermal-mode ALD (TM-ALD), plasma-mode ALD (PM-ALD), and radio-frequency (RF) sputtering methods were employed to deposit the n-type conductivity of GZO films. For ALD technology, a sandwich structure of GZO films was accomplished by layer-by-layer growth method. The performance of GZO films can be improved by modulating the growth temperature and introducing various oxygen sources. ALD-GZO films exhibit a resistivity of 3.8 x 10-3 Ω-cm, carrier concentration of 3.4 x 1020 cm-3, average optical transmittance of above 90% in the visible and infrared regions. For RF-sputtering, GZO films exhibit the resistivity of 2.9 x 10-3 Ω-cm and carrier concentration of 3.6 x 1020 cm-3. However, the optical transmittance is too low to be used for the infrared regions. On the other hand, the p-type conductivity of NiOx film can be fabricated by both e-beam evaporation and RTA process in oxygen ambient.
     Thus, the heavily GZO films (>1020 cm-3) with low resistivity (~10-3 Ω-cm) were deposited onto the p-InP/InGaAs structure by both RF sputtering and PM-ALD, which always reveal a Schottky contact characteristics. The barrier height improvement at the n-GZO/p-InP interface is proposed by using the dual zinc driven-in steps and a NiOx insertion layer to realize the ohmic characteristics. The high zinc concentration (5-8 × 1018 cm-3) is first obtained in the surface of p-InP cap layer via the dual zinc driven-in steps. An array of transmission line method (TLM) structures were designed and constructed on top of the p-InP cap layer for the contact performance. The barrier height plays an important role for the formation of ohmic property between n-type GZO and p-type InP using NiOx insertion. By inserting a NiOx layer between GZO and Au/Cr contact films, the Au/Cr/GZO/NiOx contact pad for zinc driven-in p-InP cap layer exhibits a good ohmic contact behavior and a low specific contact resistance of 3.07 × 10-4 Ω-cm2 with the post-annealing process of 430℃ for 180 sec. Thus, the transparent conducting Ga-doped ZnO (GZO) layer was grown on top of the InGaAs PIN-PDs by PM-ALD to improve in the lateral resistance effect, and the NiOx layer was used to reduce the barrier height between n-GZO and p-InP.
     The SiO2/GZO/NiOx antireflection shows an average optical transmittance of above 90% and reflectance of below 10% in the infrared spectrum. The AuGe/Au backside reflector presents the optical reflectance of above 80%. Then, the combination of two features of antireflection coating and double-path reflector is employed to decrease incident-light loss and increase double-path absorption. By introducing both the transparent-conducting-based AR coating and double-path reflectors into the device structure, the large-area planar InGaAs PIN-PDs exhibit a low dark current density of 32.8 nA/cm2 at 5-V reverse bias, a high breakdown voltage of 35-V reverse bias, high build-in voltage of 1.65 eV, high responsivity of 0.93 A/W at 1310 nm and 1.09 A/W at 1550 nm, and a high quantum efficiency of near 90% in the 1000-1600 nm spectral range. The cutoff wavelength is obtained to be about 1650 nm. Under the high-power light illumination, the photosensitivity profile of position information of InGaAs-based PD with SiO2/GZO/NiOx AR coating tri-layer is uniform and instantaneous distribution.

    Acknowledgements (Chinese) I Abstract (Chinese) II Abstract (English) IV Contents VI List of Figure VIII List of Table XIII Chapter 1. Introduction and Motivation 1 1-1 Background of Infrared Photodiodes 1 1-2 Development of Transparent Conducting Oxides 2 1-3 Research Motivation 4 Chapter 2. Fundamental Principles and Theoretical Analysis 6 2-1 Basic Theory of InP/InGaAs/InP heterojunction PIN Photodiodes 6 2-1-1 Physical Fundamentals of PN- and PIN-Photodiodes 6 2-1-2 Dark Current Mechanism 8 2-1-3 Responsivity and Quantum Efficiency 10 2-2 Growth Mechanism of Atomic Layer Deposition 12 2-3 Transmission-Line Model 14 Chapter 3. Experimental Procedure 20 3-1 Design Concept of Epitaxial Structure 20 3-2 Design Pattern of Photo-Mask 20 3-3 Epitaxial Wafer Cleaning Process 23 3-4 Dielectric Deposition of Hard Mask and Passivation Layer 23 3-5 Thermal Driven-in Step 24 3-6 Transparent Conducting Oxide of Ga-doped ZnO and NiOx 25 3-7 Antireflection Coating and Backside Reflector 28 3-8 Fabrication Process of TLM Technology 29 3-9 Fabrication Process of Planar-Type PIN PDs 30 Chapter 4. Results and Discussion 45 4-1 Properties of Antireflection Coating and Backside Reflector 45 4-1-1 Transparent Conducting Oxide of Ga-doped ZnO 45 4-1-2 Transparent Conducting Oxide of NiOx 52 4-1-3 Refractive Index and Extinction Coefficient 53 4-1-4 Optical Transmittance and Reflectance of Antireflection Coating 54 4-2 Analysis of Dopant Driven-in InP/InGaAs PIN Structure 55 4-2-1 Zn or Mg driven-in n-InP 55 4-2-2 Zn and P driven-in InP/InGaAs structure 56 4-2-3 Dark- and Photo-Current of InP/InGaAs diodes 57 4-3 Contact Performance of TCOs and AuZn-based alloys on p-InP 57 4-3-1 Specific Contact Resistance of TCOs on p-InP 58 4-3-2 Specific Contact Resistance of AuZn-based alloys on p-InP 60 4-4 Characteristics of InP/InGaAs PIN Photodiodes 61 4-4-1 Dark Current Density of InP/InGaAs PIN PDs 61 4-4-2 Temperature Dependence of Current Density-Voltage Characteristics 62 4-4-3 Capacitance-Voltage Characteristics 63 4-4-4 Responsivity and Quantum Efficiency 64 4-4-5 Photosensitivity of Position Distribution 65 Chapter 5. Conclusions 115 References 117 Publication List 126

    [1] http://www.chttl.com.tw/
    [2] http://www.todays.com.tw/index.asp
    [3] http://nl.wikipedia.org/wiki/Infrarood
    [4] http://www.photonics.com/Default.aspx
    [5] http://www.brimrose.com/home.html
    [6] http://www.infraredfocalsystems.com/index.htm
    [7] D. M. Scott, “A 2-color near-infrared sensor for sorting recycled plastic waste,” Meas. Sci. Technol., vol. 6, no. 2, 1995.
    [8] Y. H. Huang, C. C. Yang, T. C. Peng, F. Y. Cheng, M. C. Wu, Y. T. Tsai, C. L. Ho, I. M. Liu, C. C. Hong, and C. C. Lin, “10-Gb/s InGaAs p-i-n photodiodes with wide spectral range and enhanced visible spectral response,” IEEE Photon. Technol. Lett., vol. 19, no. 5, pp. 339-341, 2007.
    [9] C. P. Skrimshire, J. R. Farr, D. F. Sloan, M. J. Robertson, P. A. Putland, J. C. D. Stokoe, and R. R. Sutherland, “Reliability of mesa and planar InGaAs PIN photodiodes,” IEEE Proc. J, vol. 137, no. 1, pp. 74-78, 1990.
    [10] P. Maigne, J. A. Beraldin, T. M. Vanderwel, M. Buchanan, and D. Landheer, “An InGaAs-InP position-sensing photodetector,” IEEE J. Quantum Electron., vol. 26, no. 5, pp. 820-823, 1990.
    [11] W. J. Maeng, J. W. Lee, J. H. Lee, K. B. Chung and J. S. Park, “Studies on optical, structural and electrical properties of atomic layer deposited Al-doped ZnO thin films with various Al concentrations,” J. Phys. D: Appl. Phys., vol. 44, no. 44, pp. 445305-1-445305-7, 2011.
    [12] D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater., vol. 21, no. 3, pp. 448-455, 2011.
    [13] C. A. Hoel, T. O. Mason, J. F. Gaillard, and K. R. Poeppelmeier, “Transparent Conducting Oxides in the ZnO-In2O3-SnO2 System,” Chem. Mater., vol. 22, no. 12, pp. 3569-3579, 2010.
    [14] D. S. Ginley, “Handbook of Transparent Conductors,” Springer, New York, pp. 1-25, 2010.
    [15] S. Lee, S. Bang, J. Park, S. Park, Y. Ko, and H. Jeon, “AZO/Au/AZO multilayer as a transparent conductive electrode,” Phys. Status Solidi A, vol. 209, no. 4, pp. 698-701, 2012.
    [16] B. Y. Oh, J. H. Kim, J. W. Han, D. S. Seo, H. S. Jang, H. J. Choi, S. H. Baek, J. H. Kim, G. S. Heo, T. W. Kim, and K. Y. Kim, “Transparent conductive ZnO:Al films grown by atomic layer deposition for Si-wire-based solar cells,” Current Appl. Phys., vol. 12, no. 1, pp. 273-279, 2012.
    [17] G. Luka, M. Godlewski, E. Guziewicz1, P. Stakhira, V. Cherpak, and D. Volynyuk, “ZnO films grown by atomic layer deposition for organic electronics,” Semicond. Sci. Technol., vol. 27, no. 7, pp. 074006-1-074006-7, 2012.
    [18] J. Meyer, P. Görrn, S. Hamwi, H. H. Johannes, T. Riedl, and W. Kowalsky, “Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition,” Appl. Phys. Lett., vol. 93, no. 7, pp. 073308-1-073308-3, 2008.
    [19] S. K. Tzeng, M. H. Hon, and I. C. Leub, “Improvement in the Photocurrent to Dark Current Contrast Ratio of ZnO/Au Schottky Photodetector with PMMA Microlens Arrays,” J. Electrochem. Soc., vol. 157, no. 10, pp. H919-H923, 2010.
    [20] C. Y. Hsiao, J. H. Yang, J. R. Gong, D. Y. Lyu, T. Y. Lin, C. T. Lu, and D. Y. Lin, “Transparent conductive IZO films prepared by atomic layer deposition using DEZn/TMIn and N2O,” in 3rd International Nanoelectronics Conference (INEC), Hong Kong, pp. 1337-1338, 2010.
    [21] A. Klein, C. K¨orber, A. Wachau, F. S¨auberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, and T. O. Mason, “Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment,” Mater., vol. 3, no. 11, pp. 4892-4914, 2010.
    [22] N. Kamanina, “Features of Liquid Crystal Display Materials and Processes,” InTech, Shanghai, pp. 25-42, 2011.
    [23] J. Huang, Z. Ye, H. Chen, B. Zhao, and L. Wang, “Growth of N-doped p-type ZnO films using ammonia as dopant source gas,” J. Mater. Sci. Lett., vol. 22, no. 4, pp. 249-251, 2003.
    [24] G. Xiong, J. Wilkinson, B. Mischuck, S. Tüzemen,K. B. Ucer, and R. T. Williams, “Control of p- and n-type conductivity in sputter deposition of undoped ZnO,” Appl. Phys. Lett., vol. 80, no. 7, pp. 1195-1197, 2002.
    [25] Yanfa Yan and S. B. Zhang, “Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO,” Phys. Rev. Lett., vol. 86, no. 25, pp. 5723-5726, 2001.
    [26] S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev., vol. 110, no. 1, pp. 111–131, 2010.
    [27] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,” J. Vac. Sci. Technol. A, vol. 29, no. 5, pp. 050801-1-050801-26, 2011.
    [28] D. A. Neamen, “Semiconductor Physics and Devices: Basic Principles 3rd Edition,” McGraw Hill, New York, pp. 154-317, 2003.
    [29] A. Brillant, “Digital and Analog Fiber Optic Communications for CATV and FTTx Applications,” SPIE, Washington, pp. 313-360, 2008.
    [30] B. Chen, J. Yuan, and A. L. Holmes Jr., “Dark current modeling of InP based SWIR and MWIR InGaAs/GaAsSb type-II MQW photodiodes,” Opt. Quant. Electron, vol. 45, no. 3, pp. 271–277, 2013.
    [31] J. Nguyen, D. Z. Ting, C. J. Hill, A. Soibel, S. A. Keo, and S. D. Gunapala, “Dark current analysis of InAs/GaSb superlattices at low temperatures,” Infrared Phys. Technol., vol. 52, no. 6, pp. 317–321, 2009.
    [32] W. D. Hu, X. S. Chen, F. Yin, Z. J. Quan, Z. H. Ye, X. N. Hu, Z. F. Li, and W. Lu, “Analysis of temperature dependence of dark current mechanisms for long-wavelength HgCdTe photovoltaic infrared detectors,” J. Appl. Phys., vol. 105, no. 10, pp. 104502-1-104502-8, 2009.
    [33] T. Nguyen, C. A. Musca, J. M. Dell, J. Antoszewski, and L. Faraone, “Modelling of dark currents in LWIR HgCdTe photodiodes,” Conference on Optoelectron. Microelectron. Mater. Devices, pp. 157-160, 2002.
    [34] F. Ruske, M. Roczen, K. Lee, M. Wimmer, S. Gall, J. Hüpkes, D. Hrunski, and B. Rech, “Improved electrical transport in Al-doped zinc oxide by thermal treatment,” J. Appl. Phys., vol. 107, no. 1, pp. 013708-1-013708-8, 2010.
    [35] R. J. M. Palma and A. Lakhtakia, “Nanotechnology: A Crash Course,” SPIE, Washington, pp. 53-75, 2010.
    [36] P. M. Martin, “Handbook of Deposition Technologies for Films and Coatings 3rd Edition,” Elsevier, Massachusetts, pp. 364-391, 2010.
    [37] S. Lee, H. Park, and D. C. Paine, “A study of the specific contact resistance and channel resistivity of amorphous IZO thin film transistors with IZO source/drain metallization,” J. Appl. Phys., vol. 109, no. 6, pp. 063702-1-063702-6, 2011.
    [38] H. Cai, W. Li, Z. L., Y. Gong, and Y. Jiang, “Interaction and Ohmic Contact Between NiCr alloy and a-SiH Thin Films at Low Temperatures,” in Proc. IEEE Int. Conf. Phys. Failure Anal. Integr. Circuits, Suzhou, Jiangsu, pp. 290-293, 2009.
    [39] T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical_optical properties of Al-doped ZnO thin films grown by atomic layer deposit,” J. Vac. Sci. Technol. A, vol. 30, no. 2, pp. 021202-1-021202-10, 2012.
    [40] E. Guziewicz, M. Godlewski, L. Wachnicki, T. A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. W. Sobczak and A. Jablonski, “ALD grown zinc oxide with controllable electrical properties,” Semicond. Sci. Technol., vol. 27, no. 7, pp. 074011-1-074011-11, 2012.
    [41] H. Kim, S. J. Lim, J. M. Kim, and D. Y. Kim, “High performance transparent thin film transistor with atomic layer deposition ZnO based active channel layer,” Proc. of SPIE 7603, pp. 760310-1-760310-9, 2010.
    [42] R. L. Puurunen, “Growth Per Cycle in Atomic Layer Deposition Real Application Examplesof a Theoretical Model,” Chem. Vap. Deposition, vol. 9, no. 6, pp. 327-332, 2003.
    [43] S. K. Kim, C. S. Hwang, S. H. K. Park, and S. J. Yun, “Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant,” Thin Solid Films, vol. 478, no. 1-2, pp. 103-108, 2005.
    [44] S. J. Lim, S. Kwon, and H. Kim, “ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor,” Thin Solid Films, vol. 516, no. 7, pp. 1523-1528, 2008.
    [45] D. Kim, H. Kang, J. M. Kim, and H. Kim, “The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD,” Appl. Surf. Sci., vol. 257, no. 8, pp. 3776-3779, 2011.
    [46] L. Gong, Z. Ye, J. Lu, L. Zhu, J. Huang, X. Gu, and B. Zhao, “Highly transparent conductive and near-infrared reflective ZnO:Al thin films,” Vacuum, vol. 84, no. 7, pp. 947-952, 2010.
    [47] D. I. Rusu, G. G. Rusu, and D. Luca, “Structural Characteristics and Optical Properties of Thermally Oxidized Zinc Films,” Acta Phys. Pol. A, vol. 119, no. 6, pp. 850-856, 2011.
    [48] K. J. Qian, S. Chen, B. Zhu, L. Chen, S. J. Ding, H. L. Lu, Q. Q. Sun, D. W. Zhang, and Z. Chen, “Atomic layer deposition of ZnO on thermal SiO2 and Si surfaces using N2-diluted diethylzinc and H2O2 precursors,” Appl. Surf. Sci., vol. 258, no. 10, pp. 4657-4666, 2012.
    [49] N. R. Yogamalar and A. C. Bose, “Absorption–emission study of hydrothermally grown Al:ZnO nanostructures,” J. Alloys and Compd., vol. 509, no. 34, pp. 8493-8500, 2011.
    [50] C. W. Gorrie, A. K. Sigdel, J. J. Berry, B. J. Reese, M. F. A. M. van Hest, P. H. Holloway, D. S. Ginley, and J. D. Perkins, “Effect of deposition distance and temperature on electrical, optical and structural properties of radio-frequency magnetron-sputtered,” Thin Solid Films, vol. 519, no. 1, pp. 190-196, 2010.
    [51] S. W. Yoon, J. H. Seo, T. Y. Seong, T. H. Yu, Y. H. You, K. B. Lee, H. Kwon, and J. P. Ahn, “Ga Ordering and Electrical Conductivity in Nanotwin and Superlattice-Structured Ga-Doped ZnO,” Cryst. Growth Des., vol. 12, no. 3, pp. 1167-1172, 2012.
    [52] K. U. Sim, S. W. Shin, A.V. Moholkar, J. H. Yun, J. H. Moon, and J. H. Kim, “Effects of dopant (Al, Ga, and In) on the characteristics of ZnO thin films prepared by RF magnetron sputtering system,” Current Appl. Phys., vol. 10, no. 3, pp. S463-S467, 2010.
    [53] G. P. Hernández, A. E. Morales, U. Pal, and E. C. Anota, “Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures,” Mater. Chem. Phys., vol. 135, no. 2-3, pp. 810-817, 2012.
    [54] S. S. Shinde, P. S. Shinde, Y. W. Ohb, D. Haranath, C. H. Bhosale, and K. Y. Rajpurea, “Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films,” Appl. Surf. Sci., vol. 258, no. 24, pp. 9969-9976, 2012.
    [55] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics 2nd Edition,” Wiley, New Jersey (2007).
    [56] H. Yuan, B. Luo, W. L. Gladfelter, S. A. Campbell, “Ozone ALD of Doped ZnO as a Transparent Metal,” ECS Transactions, vol. 45, no. 3, pp. 389-400, 2012.
    [57] J. B. Park, S. H. Park, and P. K. Song, “Electrical and structural properties of In-doped ZnO films deposited by RF superimposed DC magnetron sputtering system,” J. Phys. Chem. Solids, vol. 71, no. 4, pp. 669-672, 2010.
    [58] K. Ejderha, N. Yldrm, A. Türüt, and B. Abay, “Influence of interface states on the temperature dependence and current–voltage characteristics of Ni/p-InP Schottky diodes,” Superlattices Microstruct., vol. 47, no. 2, pp. 241-252, 2010.
    [59] J. K. Luo and H. Thomas, “The influence of indium tin oxide deposition on the transport properties at InP junctions,” J. Electron. Mater., vol. 22, no. 11, pp. 1311-1316, 1993.
    [60] Q. X. Jia, J. P. Zhengb, H. S. Kwok, and W. A. Andersonc, “Indium tin oxide on InP by pulsed laser deposition,” Thin Solid Films, vol. 258, no. 1-2, pp. 260-263, 1995.
    [61] G. Eftekhari, “Improvements in the electrical properties of indium oxide/p-InP and indium oxide/n-GaAs heterostructures formed at low reaction temperatures by rapid thermal annealing,” Semicond. Sci.Technol., vol. 10, no. 8, pp. 1159-1162, 1995.
    [62] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, “Self-aligned metal source/drain InP n-metal-oxide-semiconductor field-effect transistors using Ni–InP metallic alloy,” Appl. Phys. Lett., vol. 98, no. 24, pp. 243501-1-243501-3, 2011.
    [63] H. Cai, W. Li, Z. L., Y. Gong, and Y. Jiang, “Interaction and Ohmic Contact Between NiCr alloy and a-SiH Thin Films at Low Temperatures,” in Proc. IEEE Int. Conf. Phys. Failure Anal. Integr. Circuits, Suzhou, Jiangsu, pp. 290-293, 2009.
    [64] N. F. Hasbullah, J. P. R. David, and D. J. Mowbray, “Dark current mechanisms in quantum dot laser structures,” J. Appl. Phys., vol. 109, no. 11, pp. 113111-1-113111-5, 2011.
    [65] N. F. Hasbullah and J. P. R. David, “Reverse leakage current mechanisms in quantum dot laser structures,” in Proc. IEEE Micro Nanoelectron. (RSM), Kota Kinabalu, pp. 32-35, 2011.
    [66] C. Cervera, I. R. Mohamed, R. Taalat, J. P. Perez, P. Christol, and J. B. Rodriguez, “Dark Current and Noise Measurements of an InAs/GaSb Superlattice Photodiode Operating in the Midwave Infrared Domain,” J. Electronl. Mater., vol. 41, no. 10, pp. 2714-2718, 2012.
    [67] C. Cervera, K. Jaworowicz, H. A. Kaci, R. Chaghi, J. B. Rodriguez, I. R. Mohamed, and P. Christol, “Temperature dependence performances of InAs/GaSb superlattice photodiode,” Infrared Phys. Technol., vol. 54, no. 3, pp. 258–262, 2011.
    [68] Kah-Wee Ang, Joseph Weisheng Ng, Guo-Qiang Lo, and Dim-Lee Kwong, “Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium p-i-n photodetector,” Appl. Phys. Lett., vol. 94, no. 22, pp. 223515-1-223515-3, 2009.
    [69] J. Yuan, B. Chen, and A. L. Holmes, “Improved quantum efficiency of InGaAs/InP photodetectors using Ti/Au-SiO2 phase-matched-layer reflector,” Electron. Lett., vol. 48, no. 19, pp. 1230-1231, 2012.
    [70] B. Chen, Q. Zhou, D. C. McIntosh, J. Yuan, Y. Chen, W. Sun, J. C. Campbell, and A. L. Holmes, “Natural lithography nano-sphere texturing as antireflective layer on InP-based pin photodiodes,” Electron. Lett., vol. 48, no. 21, pp. 1340-1341, 2012.
    [71] M. S. Park and J. H. Jang, “GaAs0.5Sb0.5 lattice matched to InP for 1.55 μm photo-detection,” Electron. Lett., vol. 44, no. 8, pp. 549-550, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE