研究生: |
陳昶名 Chen, Chang Ming |
---|---|
論文名稱: |
原子層沉積Al2O3薄膜於矽晶表面鈍化特性研究 Silicon Surface Passivation with ALD Al2O3 Dielectric Film |
指導教授: |
甘炯耀
Gan, Jon Yiew |
口試委員: |
黃振昌
Huang, Zhen Chang 黃崇傑 Huang, Chong Jie |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 表面鈍化層 、原子層沉積技術 、氧化鋁 、電容-電壓量測 、氧化層中的破洞 |
外文關鍵詞: | passivation, atomic layer deposition, Al2O3, CV measurement, Blister |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著矽晶太陽能產業的發展,提升效率的同時業界也要求降低成本,其中提高太陽能發電效率來以及晶圓薄化都是有效降低成本的方法,但是在矽晶圓薄化的過程中表面比率隨之增加,因此必須應用更好的表面鈍化層來降低表面載子再復合的機率,Al2O3是一種高介電材料的介電層,並且擁有足夠的固定電荷產生電場,利用場效的方式阻止少數載子在表面再復合的機率,能夠大大提升表面鈍化的效果,同時Atomic Layer Deposition俗稱ALD的鍍膜技術是近年來發展快速的一個薄膜製成的方法,能夠利用cycle數精準的控制膜厚,並擁有良好的均勻性與極高高寬比的特性使得現今很多企業應用在薄膜製程上。
本實驗在n型矽基板上利用ALD鍍製Al2O3薄膜,研究不同厚度、不同退火條件、SiNx的有無對於有效載子生命週期的影響,並將試片鍍覆鋁電極製作成金屬-氧化物-半導體的MOS結構,透過高頻電容-電壓曲線量測的結果數據中,計算矽基板的摻雜濃度、空乏區寬度、平帶電壓以及氧化層固定電荷,並且利用氧化層固定電荷與有效載子生命週期進行比照,說明ALD Al2O3的場效效果對於有效載子生命週的影響。
研究結果顯示退火處理及PECVD中的高溫製成會使氧化層的固定電荷由正轉成負電,此時場效鈍化的效果明顯提高這也反映在PCD量測的有效載子生命週期上的結果,並且對於覆蓋上SiNx的試片有無退火的處理,氧化層固定電荷變化與有效載子生命週期的趨勢相符,此外在鍍膜的過程中利用OM觀察薄膜表面也發現隨著薄膜厚度的提高與熱處理次數blister出現的密度也隨之增加,但是對於有效載子生命週期的結果並無直接的影響。
The surface to volume ratio is increasing due to the cost-driven reduction of the solar cell thickness thickness, which makes surface passivation a decisive factor for the final solar cell efficiency. Al2O3 have a high dielectric constant as a dielectric layer and have sufficient build-in nagative fixed oxide charge which generates an electric field. This field effect prevent the chances of minority carrier recombine at the surface which can greatly enhance the surface passivation.
Meanwhile Atomic Layer Deposition (ALD) coating technology is developing rapidly in recent years, a film thickness can precisely control by number of cycles. Its good uniformity characteristics and an excellent aspect ratio so that today many companies used in the film manufacturing process.
In this study, different thickness of ALD Al2O3 under different annealing conditions and PECVD SiNx are plated on n type Si wafers to examine the passivation effect. After that the samples are made into MOS structure to get the high-frequency capacitance-voltage data. The calculation of the doping concentration of the silicon substrate, the depletion zone width, the flat band voltage and fixed oxide charge will be found.
The results show that annealing treatment and high temperature PECVD lead Al2O3 fixed oxide charge change from positive into negative, then the field effect passivation has improved significantly which is also reflected in the PCD effective carrier lifetime measurement of results and for covering the SiNx. The trend of lifetime and fixed oxide charge density versus different thickness of ALD Al2O3 are the same. This explains the good passivation effect is due to more fixed oxide charge in oxide layer. In addition, we observe that there are blisters generated at film surface. With increasing film thickness and number of heat treatment density blister appeared also increases but no direct effect on the effective carrier lifetime results.
[1] http://panasonic.co.jp/corp/news/offical.data/data.dir/2015/04/en140410-4.html.
[2] Green M A. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 2009, 17(3): 183~189
[3] Green M A. Emery. K. Progress in Photovoltaics, 21(5):827-837,2013.
[4] Aberle A G. Surface Passivation of Crystalline Silicon Solar Cells: A Review. Prog Photovoltaics, 2000, 8: 473~487
[5] Sze S M. Physics and technology of semiconductor devices. Wiley, 2001(2nd edition)
[6] Taur. Y. Fundamentals of modern VLSI devices. Cambridge, 1998.
[7] Shockley W. Statistics of recombination of holes and electrons. Physical Review, 87(5):835-842,1952
[8] Hall R.N. Electron-hole recombination in germanium. Physics Review, 87:837-387,1952.
[9] Rein S. Rehrl T, Lifetime spectroscopy for defect characterization. Journal of Applied Physics,91(4):2059-2070,2002
[10] Macdonald D. Cuevas A. Capture cross section of the acceptor level of iron-boron pairs in p-type silicon by injection-level dependent lifetime measurements. Journal of Applied Physics, 89(12):7932-7939,2001
[11] Hoex B, van Erven A J M, Bosch R C M, et al. Industrial high-rate (∼5 nm/s) deposited silicon nitride yielding high-quality bulk and surface passivation under optimum anti-reflection coating conditions. Progress in Photovoltaics: Research and Applications, 2005, 13(8): 705~712
[12] Hoex B, Heil S B S, Langereis E, et al. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Applied Physics Letters, 2006, 89(4): 42112
[13] Schmidt J, Merkle A, Brendel R, et al. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al. Progress in Photovoltaics: Research and Applications, 2008, 16(6): 461~466
[14] Li T A, Cuevas A. Role of hydrogen in the surface passivation of crystalline silicon by sputtered aluminum oxide. Progress in Photovoltaics: Research and Applications, 2011, 19(3): 320~325
[15] Aberle A G. Progress in Low-temperature Surface Passivation of Silicon Solar Cells using Remote-plasma Silicon Nitride. Progress In Photovoltaics, 1997, 1(5): 29~50
[16] Hoex B, Schmidt J, Pohl P, et al. Silicon surface passivation by atomic layer deposited Al2O3. Journal of Applied Physics, 2008, 104(4): 44903
[17] Chhabra B, Weiland C, Opila R L, et al. Surface characterization of quinhydrone-methanol and iodine-methanol passivated silicon substrates using X-ray photoelectron spectroscopy. physica status solidi (a), 2011, 208(1): 86~90
[18] Kerr M. Very low bulk and surface recombination in oxidized silicon wafers. Semicond Sci Tech, 2002, 1(17): 35
[19] Chui C O, Kim H, Mcintyre P C, et al. Atomic Layer Deposition of High-K Dielectric for Germanium MOS Applications-Substrate Surface Preparation. IEEE Electron Device Letters, 2004, 25(5): 274~276
[20] Agostinelli G, Delabie A, Vitanov P, et al. Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge. Solar Energy Materials and Solar Cells, 2006, 90(18-19): 3438~3443
[21]Jan. S, Boris. B, Effective surface passivation of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks, Rapid Research Letters, 2009, 3(9): 287~289
[22] Beldarrain O, Duch M, Zabala M, et al. Blistering of atomic layer deposition Al2O3 layers grown on silicon and its effect on metal-insulator-semiconductor structures. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013, 31(1): 1A~128A
[23] Vermang B, Goverde H. A study of blister formation in ALD Al2O3 grown on silicon. IEEE, 2011, 1(978): 1135~1138
[24] Vermang B, Goverde H, Uruena A, et al. Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells. Solar Energy Materials and Solar Cells, 2012, 101: 204~209
[25] Schmidt J. Influence of different post deposition treatment on the passivation quality and interface properties of thermal ALD Al2O3 capped by PECVD SiN. Eroupean PV Solar Energy Conference, 2012: 24~28
[26] Li M, Shin H, Jeong K, et al. Blistering Induced Degradation of Thermal Stability Al. JSTS:Journal of Semiconductor Technology and Science, 2014, 14(1): 53~60
[27] 朱則榮.CMOS及相關測試元件之設計、製作與量測: [碩士論文學位論文].國立清華大學, 1996
[28] Xiao H. Introduction to Semiconductor Manufacturing Technology. International Edition, 2001
[29] 周仁均. Capacitance-Voltage Curve of MOS Structure : Measurement and Application: [碩士學位學位論文]. 國立清華大學, 2008
[30] Nicollian. MOS (Metal Oxide Semiconductor) Physics and Technology. Solid-State and Electron Devices, 1982, 1(130): 143~7100
[31]Kwa. K. A model for capacitance reconstruction from measured lossy MOS capacitance – voltage characteristics. Semicond. Sci. Technol, 2002, 18: 82~87
[32] Rein S. Lifetime spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Application.2005.
[33]Curvas A. Determination of Recombination Parameters in Semiconductors from Photoconductance Measurements. 1996 Confrence on Optoelectronic and Microelectronic Material and Device, 1996: 16~19
[34] Cuevas A. Prediction of the Open-circuit Voltage of Solar Cells from the Steady-state Photoconductance, 1997: 2, 79~90
[35] Sinton R A. Quasi-Steady-State Photoconductance, A New Method for Solar Cell Material and Device Characterization. IEEE, 1996: 457~460
[36] Koji Sugioka J F F. Low-Temperature Growth of Thin Films of Al2O3 by Sequential Surface Chemical Reaction of trimethylaluminum and H2O2. Japanese Journal of Applied Physics, 1991, 30(6B): L1139~1141
[37] G. S. Higashi, C. G F. Sequential surface chemiacl reaction limited frowth of high quality Al2O3 dielectrics. Applied Physics Letters, 1989, 19(55)
[38] Yang W S, Kim Y K, Yang S, et al. Effect of SiO2 intermediate layer on Al2O3/SiO2/n+poly Si interface deposited using atomic layer deposition (ALD) for deep submicron device applications. Surface and coatings technology, 2000, 131(1): 79~83
[39] Ashcroft, Mermin. Solidstate Physics Thomson Learning, 1976