簡易檢索 / 詳目顯示

研究生: 賴夢萍
Lai, Meng-Ping
論文名稱: 錨定去同步化於非完全連結網路上之應用
Anchor Desynchronization on Non-fully Connected Graphs
指導教授: 張正尚
Chang, Cheng-Shang
口試委員: 李端興
黃之浩
林華君
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 52
中文關鍵詞: 錨定去同步
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來感測網路開始被應用在醫學的領域裡,並稱之為身體感測網路。這些感測器被裝設在人體上用來收集病患的各項生理資訊,而個別感測器收集到的資訊會共同傳送到一個收集資料的節點,由這個節點將收集到的各項生理資訊運用無線傳輸技術將資訊傳送到醫療人員的觀測設備上隨時監測病患的即時狀況。為了解決在無線網路中傳送資訊所可能存在的碰撞問題。[6]中提出去同步化架構達到分時多工避免網路碰撞的目的。由於收集資料的節點無法調整調整本身時脈,[1]中提出的錨定去同步化演算法來解決這樣的問題。由於真實的網路中節點並非一定能完全連結,了解錨定去同步化演算法在方完全連結網路上的運作情形是非常重要的研究課題,因此針對此問題深入研究。

      在錨定去同步化架構應用在非完全連接網路的研究上,我們提出了一種非完全連接網路稱為錨定環狀網路,並根據此網路研究錨定去同步化架構的可行性,達到以下的結果。(1)錨定去同步化演算法在非完全連結網路下依然能做到互相溝通的節點達到去同步化的結果。(2)節點在錨定環狀網路下做錨定去同步化,去同步化的結果由初始相位順序決定。(3)不同的節點初始相位順序會對應到不同的蜿蜒序列,同一種蜿蜒序列會得到相同的去同步化結果,在節點數為n的錨定環狀網路中,能找到2^{n-2}種蜿蜒序列。(4)蜿蜒序列各區段中的節點,會根據最小理想間距優先固定的演算法決定最終的節點相位。


    目錄 . . . . . . . . . . . . . . . . . . . . 1 圖目錄 . . . . . . . . . . . . . . . . . . . 1 第1章 介紹 . . . . . . . . . . . . . . . . . 4 第2章 錨定去同步化. . . . . . . . . . . . . . 6 2.1 錨定去同步化的基本架構 . . . . . . . . . . 6 2.2 完全連結網路的收斂結果 . . . . . . . . . . . 13 第3章 錨定去同步於錨定環狀網路上之應用. . . . . . . . . 14 3.1 錨定環狀網路. . . . . . . . . . . . . . 16 3.2 節點分類 . . . . . . . . . . . . . . . . 18 3.3 蜿蜒序列 . . . . . . . . . . . . . . 19 3.4 蜿蜒序列的端點固定 . . . . . . . . . . 21 3.5 錨定環狀網路的收斂結果 . . . . . . . . . . . 24 第4章 廣義非完全連結網路的模擬 . . . . . . . . . . 33 4.1 彼得森網路 . . . . . . . . . . . . . . . . 33 4.2 小世界網路 . . . . . . . . . . . . . . . . 35 第5章 結論 . . . . . . . . . . . . . . . . . . 38 參考文獻 . . . . . . . . . . . . . . . . . . 38 附錄 . . . . . . . . . . . . . . . . . . . . 41 第A章 證明輔助定理4 . . . . . . . . . . . . . . 41

    [1] C.-M. Lien, S.-H. Chang, C.-S. Chang, and D.-S. Lee, ”Anchored desynchronization,” Proc.
    of IEEE INFOCOM miniconference 2012.
    [2] G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucumán Rev. Ser. A,
    Vol. 5, pp. 147-151, 1946.
    [3] S. Boyd, P. Diaconis, L. Xiao, “Fastest mixing markov chain on a graph,” SIAM Review,
    Vol. 46, No. 4, pp. 667-689, 2004.
    [4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE
    Transactions on Information Theory, Vol. 52, No. 6, pp. 2508–2530, 2006.
    [5] P. Diconis and D. Stroock, “Geometric bounds for eigenvalues of markov chains, The Annals
    of Applied Probability, Vo. 1, pp. 36–61, 1991.
    [6] J. Degesys, I. Rose, A. Patel, and R. Nagpal, “Desync: Self-organizing desynchronization
    and TDMA on wireless sensor networks,” in International Conference on Information Processing
    in Sensor Networks (IPSN), 2007.
    [7] J. Degesys, I. Rose, A. Patel, R. Nagpal, “Desynchronization: the theory of self-organizing
    algorithms for round-robin scheduling,” First International Conference on Self-Adaptive and
    Self-Organizing Systems, 2007. SASO ’07.
    [8] J. Degesys and R. Nagpal, “Towards Desynchronization of Multi-hop Topologies,” Second
    International Conference on Self-Adaptive and Self-Organizing Systems, 2008. SASO ’08.
    [9] C.-M. Lien, C.-S. Chang, J. Cheng, and D.-S. Lee, ”Maximizing throughput in wireless
    networks with finite internal buffers,” Proc. of IEEE INFOCOM 2011.
    [10] A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications.
    New York: Academic Press, 1979.
    [11] R. Mirollo and S. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM
    Journal of Applied Math, Vol. 50, No. 6, pp. 1645�V62, Dec. 1990.
    [12] A. Motskin, T. Roughgarden, P. Skraba and L. Guibas, “Lightweight coloring and desynchronization
    for networks,” Proc. of IEEE INFOCOM 2009.
    [13] R. Nelson, Probability, Stochastic Processes, and Queueing Theory: the Mathematics of
    Computer Performance Modeling. Springer-Verlag: New York, 1995.
    [14] B. N. Oreshkin, M. J. Coates, and M. G. Rabbat, “Optimization and analysis of distributed
    averaging with short node memory,” IEEE Transactions on Signal Processing, Vol. 58, No.
    5, pp. 2850-2865, 2010.
    [15] R. Pagliari, Y.-W. Hong, and A. Scaglione, “Bio-inspired algorithms for decentralized
    round-robin and proportional fair scheduling, IEEE Journal on Selected Areas in Communications:
    Special Issue on Bio-Inspired Networking, Vol. 28, No. 4, pp. 564-575, May
    2010.
    [16] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control
    in integrated service networks: the single-node case,” IEEE/ACM Trans. Networking, Vol.
    1, pp. 344-357, 1993.
    [17] C. S. Peskin. Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical
    Sciences, New York University, New York, 1975.
    [18] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and
    scheduling policies for maximum throughput in multihop radio networks,” IEEE Transactions
    on Automatic Control, vol. 31, no. 12, pp. 1936–1948, 1992.
    [19] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Syst. Control Lett.,
    Vol. 53, No. 1, pp. 65�V78, Sep. 2004.
    [20] W.-C. Yueh, “Eigenvalues of several tridiagonal matrices,” Applied Mathematics
    E-Notes, pp. 66-74, No. 5, 2005. Available free at mirror sites of http://
    www.math.nthu.edu.tw/~amen/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE