簡易檢索 / 詳目顯示

研究生: 林嘉炫
Lin, Chia-Hsuan
論文名稱: 近室壓X光光電子能譜探討酞菁氧鈦對二氧化氮氣體之感測機制
Ambient Pressure XPS Studies of NO2 Sensing Mechanism of Titanyl Phthalocyanine
指導教授: 楊耀文
Yang, Yaw-Wen
口試委員: 曾院介
Tseng, Yuan-Chieh
羅夢凡
Luo, Meng-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 94
中文關鍵詞: 酞菁氧鈦二氧化氮氣體感測器近室壓X光光電子能譜
外文關鍵詞: Titanyl phthalocyanine, Nitrogen dioxide, Gas sensor, Ambient pressure X-ray photoelectron spectroscopy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬酞菁 (metal phthalocyanines, MPcs) 具備許多獨特優秀的材料性能,如載子易傳輸性、抗水氧性、高溫熱穩定性等,被廣泛應用於有機薄膜電晶體 (organic thin film transistor, OTFT) 形式的氣體感測器。本篇論文主要利用於台灣光源新建置的近室壓X光光電子能譜 (ambient pressure X-ray photoelectron spectroscopy, AP-XPS) 實驗站,探討酞菁氧酞 (titanyl phthalocyanine, TiOPc) 薄膜對二氧化氮 (nitrogen dioxide, NO2) 氣體之感測機制,以釐清表面吸附NO2對有機半導體電子結構的影響。當NO2背景壓力上升至0.025 mbar時,TiOPc各組成元素特徵峰皆往低束縛能處位移0.4 eV,此腔體壓力環境對應OTFT元件感測NO2氣體的偵測極限值,而電子軌域束縛能的減小源自於NO2分子吸附所致的電洞摻雜效應。進一步透過XPS的分峰分析,觀察發現於更高濃度的NO2氣氛下,氮在材料表層結構呈現多種賦存狀態,除了NO2氣體於薄膜表面吸附狀態外,其還有機會走歧化反應路徑產生NO3-以及NO+,其中NO還原物種會鍵結至中心金屬Ti上,吸引其上的價電子雲密度,並改變金屬離子所處的晶場配位環境。另外TiOPc分子在基材上的排列位向於NO2曝氣前後也有顯著變化,藉由角解析X光近緣吸收細微結構 (near edge X-ray adsorption fine structure, NEXAFS) 能譜的分析結果,瞭解原本近似平躺的分子排列結構,在NO2氣體吸附於薄膜上後轉變為凌亂無序的分布狀態。論文最後使用酞菁銅 (copper phthalocyanine, CuPc) 薄膜進行相同的實驗操作,藉以探究不同分子構形與中心金屬種類對NO2分子吸脫附的影響及其在薄膜表面的化學反應,並瞭解CuPc對NO2氣體感測之應用性。經由軟X光臨場光譜技術提供的資訊,我們可以全盤參透NO2氣體與金屬酞菁分子之間的作用機制,且對其特定毒性氣體的偵測原理有更進一步的認識。


    Metal phthalocyanines (MPcs) have been demonstrated to be useful materials for gas sensing application due to their favorable transducer response, high resistance to oxygen and moisture interference, and good thermal stability. They have been used widely for organic thin film transistor (OTFT) gas sensors. In this thesis, we use newly completed ambient pressure X-ray photoelectron spectroscopy (AP-XPS) endstation to investigate the nitrogen dioxide (NO2) sensing mechanism of titanyl phthalocyanine (TiOPc) and derive at how the electronic structure of TiOPc is modified during the gas sensing process. An abrupt lower binding energy shift of 0.4 eV is noted when the NO2 backing pressure is increased above 0.025 mbar, in accord with the detection threshold of 25 ppm determined from OTFT measurements. And the binding energy shift is interpreted as an evidence of hole-doping effect by NO2 on TiOPc film. With XPS curve fitting analysis, a variety of N-containing surface species is characterized under NO2 rich conditions. The surface adsorbed NO2 might undergo a disproportionation process to produce NO3- and NO+. Reduced nitrogenated species could bond to titanium central atom and increase its binding energy due to their electron withdrawing nature. Simultaneously, the formation of the ionic bond modifies the electronic structure of unoccupied orbitals of metal ion through the changed crystal field. In addition, the molecular orientation of TiOPc is found to change after the exposure of NO2. The angle dependent near edge X-ray adsorption fine structure (NEXAFS) data reveal that the aromatic plane of printine TiOPc thin film are oriented preferentially along the substrate surface plane, but turns into random orientation after the dose of NO2. Same experimental approach is extended to the investigation of copper phthalocyanine (CuPc) thin film to address whether different molecular configuration and different central metal atom in CuPc indeed influence the NO2 absorption/reaction behavior and govern its possible application in NO2 sensing. With real time information available from AP-XPS techniques, one can fully explore the the interaction between NO2 gases and TiOPc thin film, and further understanding the principle of the toxic gas detection.

    摘要 i Abstract iii 謝誌 v 目錄 vi 圖目錄 viii 表目錄 xii 第一章 緒論 1 1-1 氮氧化物 1 1-2 氣體感測器 2 1-3 金屬酞菁錯合物之氣體感測研究 3 1-3-1 金屬酞菁 (Metal phthalocyanines, MPcs) 3 1-3-2 金屬酞菁的氣體感測原理 5 1-3-3 文獻回顧 7 1-4 研究動機 17 第二章 實驗技術與原理簡介 19 2-1 同步輻射光源 (Synchrotron radiation source) 19 2-2 X光光電子能譜術 (X-ray photoelectron spectroscopy, XPS) 21 2-3 近室壓X光光電子能譜術 (Ambient pressure XPS, AP-XPS) 25 2-3-1近室壓X光光電子能譜技術簡介 26 2-3-2 TLS BL24A近室壓X光光電子能譜實驗站與試車結果 28 2-4 近緣X光吸收細微結構能譜術 (Near-edge X-ray adsorption fine structure, NEXAFS) 34 2-4-1近緣X光吸收細微結構能譜原理 34 2-4-2 X光入射角與分子躍遷偶極矩影響X光吸收係數之關係式 35 第三章 實驗藥品、儀器設備與實驗步驟 39 3-1 實驗藥品與氣體 39 3-2 儀器設備 40 3-3 有機半導體薄模樣品製作流程 41 3-3-1 基材矽晶片前置處理 41 3-3-2 矽晶片表面自組裝官能化修飾 42 3-3-3 真空蒸鍍有機半導體薄膜 43 第四章 實驗結果與討論 44 4-1 NO2氣體吸附於TiOPc薄膜之AP-XPS結果分析 44 4-1-1 臨場量測在不同NO2背景壓力TiOPc能帶結構之變化 44 4-1-2 TiOPc之N 1s細掃圖譜及其曲線分峰擬合結果 50 4-1-3 TiOPc之O 1s細掃圖譜及其曲線分峰擬合結果 57 4-1-4 TiOPc之C 1s細掃圖譜及其曲線分峰擬合結果 60 4-1-5 TiOPc之Ti 2p細掃圖譜及其曲線分峰擬合結果 63 4-2 NO2氣體吸附於TiOPc薄膜之NEXAFS臨場量測結果分析 67 4-2-1 TiOPc分子晶體場效應與Ti L edge吸收光譜的關聯性 67 4-2-2 TiOPc於不同分析腔體環境Ti L-edge NEXAFS結果探討 69 4-3 NEXAFS 分析量測NO2曝氣前後TiOPc薄膜分子的排列位向 72 4-4 NO2氣體吸附於CuPc薄膜之AP-XPS結果分析 76 4-4-1 臨場量測在不同NO2背景壓力CuPc能帶結構之變化 77 4-4-2 CuPc之N 1s、O 1s與C 1s細掃圖譜及其曲線分峰擬合結果 79 4-4-3 CuPc之Cu 2p細掃圖譜分析結果 84 4-5 結論 86 第五章 總結 88 第六章 參考文獻 91

    1. 氮氧化物, https://zh.wikipedia.org/wiki/).
    2. Threshold Limit Values (TLV) and Immediately Dangerous to Life and Health (IDLH) values, https://www.mathesongas.com/pdfs/products/threshold-limit-values-(tlv).pdf).
    3. 周瑞福, 氣體感測器的原理與應用, http://www.sanlien.com/ad/san_tech.nsf/foundationview/836522106181709A482577A5002C8968/$FILE/77-25-31.pdf).
    4. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, Analytical Chemistry, 1962, 34, 1502-1503.
    5. 吳泉毅、楊宗燁、林鴻明, 物理雙月刊, 2003, 25, 405-411.
    6. G. F. Fine, L. M. Cavanagh, A. Afonja and R. Binions, Sensors, 2010, 10, 5469.
    7. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, Sensors and Actuators B: Chemical, 2011, 160, 580-591.
    8. 氣體感測器原理, http://www.how01.com/post_LPQe8EEk3jdN6.html).
    9. 酞菁, https://zh.wikipedia.org/wiki/).
    10. C. C. Leznoff and A. B. P. Lever, Phthalocyanines : properties and applications VCH:  New York, 1996.
    11. A. Facchetti, Materials Today, 2007, 10, 28-37.
    12. J. D. Wright, Progress in Surface Science, 1989, 31, 1-60.
    13. 左霞、韋永德、吳誼群, 化學進展, 2004, 16, 68-76.
    14. Y. Sadaoka, T. A. Jones, G. S. Revell and W. Göpel, Journal of Materials Science, 1990, 25, 5257-5268.
    15. L. Lozzi, S. Picozzi, S. Santucci, C. Cantalini and B. Delley, Journal of Electron Spectroscopy and Related Phenomena, 2004, 137, 101-105.
    16. T. Nishi, K. Kanai, Y. Ouchi, M. R. Willis and K. Seki, Chemical Physics, 2006, 325, 121-128.
    17. J. H. Park, J. E. Royer, E. Chagarov, T. Kaufman-Osborn, M. Edmonds, T. Kent, S. Lee, W. C. Trogler and A. C. Kummel, Journal of the American Chemical Society, 2013, 135, 14600-14609.
    18. 王毓頡, 碩士, 國立清華大學, 2015.
    19. 科教資源/同步加速器光源簡介, https://www.nsrrc.org.tw/).
    20. BL24A Wide Range SGM Beamline, http://efd.nsrrc.org.tw/manage/fck_fileimage/file/bldoc/24AWRSGM.htm).
    21. J. C. Vickerman, Surface Analysis - The Principal Techniques, John Wiley & Sons, Ltd, 1 edn., 1997.
    22. K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, John Wiley & Sons, 2 edn., 2008.
    23. R. Paynter, XPS Theory, http://csacs.mcgill.ca/custom/docs/activities/classes/2009-class-paynter-theory.pdf).
    24. 張立信, 國家奈米元件實驗室奈米通訊, 2012, 19, 17-23.
    25. 王嘉興、張孫堂、楊耀文, 真空科技, 2017, 30, 33-42.
    26. H. B. O. Karslıoğlu, in Operando Research in Heterogeneous Catalysis, Springer 2017, pp. 31-57.
    27. D. Frank Ogletree, H. Bluhm, E. D. Hebenstreit and M. Salmeron, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 601, 151-160.
    28. H. Bluhm, Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 71-84.
    29. D. E. Starr, Z. Liu, M. Havecker, A. Knop-Gericke and H. Bluhm, Chemical Society Reviews, 2013, 42, 5833-5857.
    30. C. Mariani and G. Stefani, in Synchrotron Radiation: Basics, Methods and Applications, Springer 2015, pp. 275-317.
    31. S. Axnanda, M. Scheele, E. Crumlin, B. Mao, R. Chang, S. Rani, M. Faiz, S. Wang, A. P. Alivisatos and Z. Liu, Nano Letters, 2013, 13, 6176-6182.
    32. 李志甫, in 儀器總覽, 國家實驗研究院儀器科技研究中心, 1998, pp. 59-61.
    33. J. Stohr, NEXAFS Spectroscopy, Springer-Verlag Berlin Heidelberg, 1992.
    34. 范良任、許瑤真、楊耀文, 化學 (中國化學會), 2005, 63, 1-10.
    35. C.-H. Wang, Y.-C. Cheng, J.-W. Su, L.-J. Fan, P.-Y. Huang, M.-C. Chen and Y.-W. Yang, Organic Electronics, 2010, 11, 1947-1953.
    36. S. Sinha, C. H. Wang and M. Mukherjee, Physica E: Low-dimensional Systems and Nanostructures, 2017, 93, 39-45.
    37. T. J. Klofta, J. Danziger, P. Lee, J. Pankow, K. W. Nebesny and N. R. Armstrong, The Journal of Physical Chemistry, 1987, 91, 5646-5651.
    38. 蔡淑慧, 半導體工程 精選, 五南文化, 2007.
    39. Y. Zhang, S. Wang, A. Demasi, I. Reid, L. F. J. Piper, A. Y. Matsuura, J. E. Downes and K. E. Smith, Journal of Materials Chemistry, 2008, 18, 1792-1798.
    40. A. Lerch, L. Fernandez, M. Ilyn, M. Gastaldo, M. Paradinas, M. A. Valbuena, A. Mugarza, A. B. M. Ibrahim, J. Sundermeyer, U. Höfer and F. Schiller, The Journal of Physical Chemistry C, 2017, 121, 25353-25363.
    41. J. Haubrich, R. G. Quiller, L. Benz, Z. Liu and C. M. Friend, Langmuir, 2010, 26, 2445-2451.
    42. O. Rosseler, M. Sleiman, V. N. Montesinos, A. Shavorskiy, V. Keller, N. Keller, M. I. Litter, H. Bluhm, M. Salmeron and H. Destaillats, The Journal of Physical Chemistry Letters, 2013, 4, 536-541.
    43. A. Krepelova, J. Newberg, T. Huthwelker, H. Bluhm and M. Ammann, Physical Chemistry Chemical Physics, 2010, 12, 8870-8880.
    44. Langmuir adsorption model, https://zh.wikipedia.org/wiki/).
    45. B. J. Finlayson-Pitts, L. M. Wingen, A. L. Sumner, D. Syomin and K. A. Ramazan, Physical Chemistry Chemical Physics, 2003, 5, 223-242.
    46. A. Mrwa, M. Friedrich, A. Hofmann and D. R. T. Zahn, Sensors and Actuators B: Chemical, 1995, 25, 596-599.
    47. P. Malacrida, H. G. Sanchez Casalongue, F. Masini, S. Kaya, P. Hernandez-Fernandez, D. Deiana, H. Ogasawara, I. E. L. Stephens, A. Nilsson and I. Chorkendorff, Physical Chemistry Chemical Physics, 2015, 17, 28121-28128.
    48. B. Brena, Y. Luo, M. Nyberg, S. Carniato, K. Nilson, Y. Alfredsson, J. Åhlund, N. Mårtensson, H. Siegbahn and C. Puglia, Physical Review B, 2004, 70, 195214.
    49. What is Adventitious Carbon?, http://www.xpsfitting.com/2011/01/what-is-adventitious-carbon.html).
    50. T. A. Betley, Q. Wu, T. Van Voorhis and D. G. Nocera, Inorganic Chemistry, 2008, 47, 1849-1861.
    51. M. C. Biesinger, L. W. M. Lau, A. R. Gerson and R. S. C. Smart, Applied Surface Science, 2010, 257, 887-898.
    52. R. D. Feltham and P. Brant, Journal of the American Chemical Society, 1982, 104, 641-645.
    53. 吳文斌、黃迪靖, 國家同步輻射研究中心簡訊, 2004, 56, 12-14.
    54. Y. Alfredsson, H. Rensmo, A. Sandell and H. Siegbahn, Journal of Electron Spectroscopy and Related Phenomena, 2009, 174, 50-54.
    55. G. A. Craig and M. Murrie, Chemical Society Reviews, 2015, 44, 2135-2147.
    56. D. Maganas, M. Roemelt, M. Havecker, A. Trunschke, A. Knop-Gericke, R. Schlogl and F. Neese, Physical Chemistry Chemical Physics, 2013, 15, 7260-7276.
    57. G. Bunker, Introduction to XAFS: A Pratical Guide to X-ray Absorption Fine Structure Spectroscopy, Cambridge, 2010.
    58. D. F. Pickup, I. Zegkinoglou, B. Ballesteros, C. R. Ganivet, J. M. García-Lastra, P. L. Cook, P. S. Johnson, C. Rogero, F. de Groot, A. Rubio, G. de la Torre, J. E. Ortega and F. J. Himpsel, The Journal of Physical Chemistry C, 2013, 117, 4410-4420.
    59. S. Yu, S. Ahmadi, C. Sun, K. Schulte, A. Pietzsch, F. Hennies, M. Zuleta and M. Göthelid, The Journal of Physical Chemistry C, 2011, 115, 14969-14977.
    60. J. E. Downes, C. McGuinness, P.-A. Glans, T. Learmonth, D. Fu, P. Sheridan and K. E. Smith, Chemical Physics Letters, 2004, 390, 203-207.
    61. J. Brunet, V. P. Garcia, A. Pauly, C. Varenne and B. Lauron, Sensors and Actuators B: Chemical, 2008, 134, 632-639.
    62. S. Carniato, G. Dufour, Y. Luo and H. Ågren, Physical Review B, 2002, 66, 045105.
    63. Metal–ligand multiple bond, https://zh.wikipedia.org/wiki/).

    QR CODE