研究生: |
劉建宏 Chein-Hung Liu |
---|---|
論文名稱: |
胃幽門螺旋桿菌染色核質分離相關蛋白Spo0J(Hp1138)及Soj(Hp1139)功能的研究與分析 Functional Studies of the Chromosome Segregation Proteins Spo0J (Hp1138) and Soj (Hp1139) from Helicobacter pylori |
指導教授: |
黃海美教授
Haimei Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 胃幽門螺旋桿菌 、細菌染色核質分離 、細菌染色核質分離相關蛋白A 、細菌染色核質分離相關蛋白B 、細菌染色核質分離系統 |
外文關鍵詞: | Helicobacter pylori, Spo0J (ParB), Soj (ParA), parS DNA, ParAB system, bacterial chromosome segregation, agarose EMSA, ATPase assay, Co-IP, immuno-fluorescence |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Spo0J (ParB)及Soj (ParA)這兩個蛋白質和parS DNA序列構成了ParAB系統並在細菌染色核質分離的過程中扮演重要的角色。它們可能藉由互相幫忙而去完成它們的任務。然而,這兩個蛋白質之間互相作用的關係及生物功能大部分都還不是很清楚。在胃幽門螺旋桿菌中,Hp1138及Hp1139這兩個蛋白質分別被預測為具有Spo0J及Soj的功能。然而,有關這兩個蛋白質的功能到目前為止都還沒有被證實。因此,這兩個蛋白質的功能,以及它們之間的互相作用是非常值得去研究的。為了要研究這兩個蛋白質的功能,重組的Hp1138及Hp1139蛋白分別被建構,純化及功能性分析。首先,這些重組蛋白質被個別研究其特性以及分析其蛋白質活性。結果顯示Hp1138具有結合parS DNA序列的能力,而Hp1139擁有水解ATP的活性。再加上在Hp1142序列中發現的兩段可能性parS DNA序列具有與Hp1138結合的能力,暗示了胃幽門螺旋桿菌中ParAB系統存在的可能性。接下來,三種不同的分法分別被運用來研究這兩個蛋白質之間的互相作用。第一,在測定水解ATP能力的實驗中,結果顯示Hp1138及parS可以促進Hp1139水解ATP的能力;更進一步地,Hp1138促進Hp1139水解ATP的能力發現在parS存在之下被增進了。第二,在研究蛋白質與核酸結合能力的實驗中,結果指出Hp1139能夠促進Hp1138結合parS DNA序列的能力,另外也發現了ATP形式的Hp1139具有parS DNA結合的能力,這與先前研究指出Soj參與Spo0J-parS複合物的形成的結果是相符合的。此外,在三種不同形式的Hp1139中,以ATP結合形式的Hp1139表現出最明顯的促進效應。另外,結果也顯示了Hp1138與ATP-Hp1139具有互相促進結合parS DNA序列的能力。以上蛋白質與核酸結合能力的實驗結果在相關研究當中是最新的發現。第三,本研究首次使用免疫共沉澱反應來研究Spo0J與Soj的相互作用,實驗結果顯示出Hp1139可以與Hp1138或Hp1138-parS作用,而其中又以與ATP結合形式的Hp1139是與Hp1138或Hp1138-parS相互作用最明顯的。然而,Hp1138與Hp1139的相互作用在胃幽門螺旋桿菌的細胞萃取物中卻沒有發現,暗示可能有更複雜的機制存在細菌體內。最後,在這個研究裡探討了胃幽門螺旋桿菌中Hp1138及Hp1139的蛋白質表現量及分布位置。酸誘導實驗結果顯示這兩個蛋白質並非酸性誘導的蛋白質。此外,它們的表現量在分裂中是較非分裂中的胃幽門螺旋桿菌多的,暗示了這兩個蛋白質可能跟細菌分裂有關。在免疫螢光顯微鏡的實驗中,可以發現到Hp1138會形成明顯分離的亮點,而此亮點的分離又與細菌核核質的分離總是一起的;另外Hp1139被發現在細菌分裂過程中會形成類似螺旋狀的結構。上述發現都與先前對Spo0J與Soj的分布研究都相當符合。所以從以上的結果可以猜測Hp1138與Hp1139可能與胃幽門螺旋桿菌的染色核質分離相當有關。然而,Hp1138及Hp1139在胃幽門螺旋桿菌中的真實生物功能需要更進一步的實驗去證實。
Spo0J (ParB), Soj (ParA) proteins and parS DNA sequence were ParAB system implicated in bacterial chromosome segregation. They may work together to accomplish their functions. However, the interaction-relationship and bio-functions between Spo0J and Soj remained largely unclear. In H. pylori, Hp1138 and Hp1139 was putative Spo0J and Soj protein, respectively. However, there were no published data to support their functions. Therefore, it was worth investigating the functions and studying the interactions between these two proteins. To study their functions, recombinant Hp1138 and Hp1139 were constructed, purified and assayed. And high sensitivity and specificity antibodies were prepared. First, the recombinant proteins were characterized and assayed for their individual activity. The data showed that Hp1138 had parS-binding activity and Hp1139 possessed ATPase activity. Together with the possible parS sequences in Hp1142 were found to have binding activity to Hp1138, suggesting ParAB system might exist in H. pylori. Next, three methods were applied to study the interactions between Hp1138, parS and Hp1139. First, ATPase assay indicated that Hp1138 and parS could activate the activity of Hp1139. In addition, the activation by Hp1138 was enhanced in the presence of parS. Second, agarose EMSA showed that Hp1139 could improve parS-binding of Hp1138 and ATP-bound Hp1139 had low parS-binding activity, consistent with that Soj was reported to play a role in the formation of Spo0J-parS complex. Among three states, the ATP-bound Hp1139 was the most efficient effecter. Furthermore, ATP-Hp1139 and Hp1138 could improve parS-binding of each other. The above mentioned agarose EMSA data were new findings in related studies. Third, in Co-IP, the data revealed that Hp1139 could interact with Hp1138 or Hp1138-parS, again the ATP-bound Hp1139 was the most significant interaction partner. However, interaction between Hp1138 and Hp1139 was not found in H. pylori lysate, indicating that a more complicated mechanism might exist in vivo. Finally, protein level and localization of Hp1138 and Hp1139 in H. pylori was determined. Acid-induced analysis showed that these two proteins were not acid-induced protein. Their expression in dividing H. pylori were more than non-dividing H. pylori, suggesting that these two proteins might be involved in cell division. The immuno-fluorescence images displayed that Hp1138 formed discrete foci co-separated with nucleoid and Hp1139 formed helix-like structure through cell division, consistent with previous studies on localization of Spo0J and Soj. The above results suggested that Hp1138 and Hp1139 may be involved in chromosome segregation in H. pylori. However, further experiments were required for studying the bio-functions of Hp1138 and Hp1139 in vivo.
Allan E, Clayton CL, McLaren A, Wallace DM, Wren BW (2001): Characterization of the low-pH responses of Helicobacter pylori using genomic DNA arrays. Microbiology 147:2285-92.
Ang S, Lee CZ, Peck K, Sindici M, Matrubutham U, Gleeson MA, Wang JT (2001): Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray. Infect Immun 69:1679-86.
Autret S, Errington J (2003): A role for division-site-selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein in Bacillus subtilis. Mol Microbiol 47:159-69.
Autret S, Nair R, Errington J (2001): Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein. Mol Microbiol 41:743-55.
Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, Stemmermann GN, Nomura A (1995): Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55:2111-5.
Bouet JY, Funnell BE (1999): P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. Embo J 18:1415-24.
Bouet JY, Surtees JA, Funnell BE (2000): Stoichiometry of P1 plasmid partition complexes. J Biol Chem 275:8213-9.
Cervin MA, Spiegelman GB, Raether B, Ohlsen K, Perego M, Hoch JA (1998): A negative regulator linking chromosome segregation to developmental transcription in Bacillus subtilis. Mol Microbiol 29:85-95.
Davey MJ, Funnell BE (1994): The P1 plasmid partition protein ParA. A role for ATP in site-specific DNA binding. J Biol Chem 269:29908-13.
Davey MJ, Funnell BE (1997): Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB. J Biol Chem 272:15286-92.
Davis MA, Martin KA, Austin SJ (1992): Biochemical activities of the parA partition protein of the P1 plasmid. Mol Microbiol 6:1141-7.
Draper GC, Gober JW (2002): Bacterial chromosome segregation. Annu Rev Microbiol 56:567-97.
Dunn BE, Cohen H, Blaser MJ (1997): Helicobacter pylori. Clin Microbiol Rev 10:720-41.
Easter J, Jr., Gober JW (2002): ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol Cell 10:427-34.
Ebersbach G, Gerdes K (2004): Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol Microbiol 52:385-98.
Eichelberg K, Ginocchio CC, Galan JE (1994): Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J Bacteriol 176:4501-10.
Figge RM, Easter J, Gober JW (2003): Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol 47:1225-37.
Friedman SA, Austin SJ (1988): The P1 plasmid-partition system synthesizes two essential proteins from an autoregulated operon. Plasmid 19:103-12.
Fung E, Bouet JY, Funnell BE (2001): Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. Embo J 20:4901-11.
Glaser P, Sharpe ME, Raether B, Perego M, Ohlsen K, Errington J (1997): Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev 11:1160-8.
Godfrin-Estevenon AM, Pasta F, Lane D (2002): The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol Microbiol 43:39-49.
Gordon GS, Wright A (2000): DNA segregation in bacteria. Annu Rev Microbiol 54:681-708.
Hayes F, Radnedge L, Davis MA, Austin SJ (1994): The homologous operons for P1 and P7 plasmid partition are autoregulated from dissimilar operator sites. Mol Microbiol 11:249-60.
Hiraga S (1992): Chromosome and plasmid partition in Escherichia coli. Annu Rev Biochem 61:283-306.
Koonin EV (1993): A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol 229:1165-74.
Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979): An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95-7.
Leonard TA, Butler PJ, Lowe J (2004): Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol 53:419-32.
Leonard TA, Butler PJ, Lowe J (2005): Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch. Embo J 24:270-82.
Lewis PJ (2001): Bacterial chromosome segregation. Microbiology 147:519-26.
Lewis PJ, Errington J (1997): Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the SpoOJ partitioning protein. Mol Microbiol 25:945-54.
Lin DC, Grossman AD (1998): Identification and characterization of a bacterial chromosome partitioning site. Cell 92:675-85.
Lin DC, Levin PA, Grossman AD (1997): Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc Natl Acad Sci U S A 94:4721-6.
Lobocka M, Yarmolinsky M (1996): P1 plasmid partition: a mutational analysis of ParB. J Mol Biol 259:366-82.
Marshall BJ, Warren JR (1984): Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311-5.
Marston AL, Errington J (1999): Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell 4:673-82.
Minamino T, MacNab RM (2000): FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol Microbiol 37:1494-503.
Mohl DA, Easter J, Jr., Gober JW (2001): The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol 42:741-55.
Mohl DA, Gober JW (1997): Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88:675-84.
Nardmann J, Messer W (2000): Identification and characterization of the dnaA upstream region of Thermus thermophilus. Gene 261:299-303.
Niki H, Hiraga S (1997): Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. Cell 90:951-7.
Nordstrom K, Austin SJ (1989): Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23:37-69.
Quisel JD, Grossman AD (2000): Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol 182:3446-51.
Quisel JD, Lin DC, Grossman AD (1999): Control of development by altered localization of a transcription factor in B. subtilis. Mol Cell 4:665-72.
Radnedge L, Youngren B, Davis M, Austin S (1998): Probing the structure of complex macromolecular interactions by homolog specificity scanning: the P1 and P7 plasmid partition systems. Embo J 17:6076-85.
Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J, Schachter V, Chemama Y, Labigne A, Legrain P (2001): The protein-protein interaction map of Helicobacter pylori. Nature 409:211-5.
Romberg L, Levin PA (2003): Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu Rev Microbiol 57:125-54.
Sharpe ME, Errington J (1996): The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol Microbiol 21:501-9.
Thomsen LL, Gavin JB, Tasman-Jones C (1990): Relation of Helicobacter pylori to the human gastric mucosa in chronic gastritis of the antrum. Gut 31:1230-6.
Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Venter JC, et al. (1997): The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539-47.
Yamaichi Y, Niki H (2000): Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc Natl Acad Sci U S A 97:14656-61.
Yamaichi Y, Niki H (2004): migS, a cis-acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome. Embo J 23:221-33.