簡易檢索 / 詳目顯示

研究生: 林家楹
Chia-Ying Lin
論文名稱: 有機三重態太陽能電池摻雜金屬錯合物的光物理量測及元件效益比較
The photophysical properties and effects of metal organic complex doping in organic solar cells
指導教授: 洪勝富
Sheng-Fu Horng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 72
中文關鍵詞: 有機太陽能電池螢光生命期激子擴散長度雙層結構
外文關鍵詞: organic solar cell, fluorescence lifetime, exciton diffusion length, bilayer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機太陽能電池的研究發展之下,為了提升元件效率,其中的改善方法之ㄧ,即是讓元件的主動層厚度增加以吸收較多的光子,因而產生較多的激子,這時激子的擴散長度及生命期就愈顯重要,如何讓激子的擴散長度增加和载子的生命期變長就是本論文所要研究的重點。
    目前已知的是摻雜金屬錯合物在有機材料中,可以讓激子因為重原子的效應(Heavy atom effect),發生自旋軌道耦合(Spin-orbit coupling ),使得單重態激子可以經由內部換效應跨越到三重態,生命期也跟著增加。而本論文的研究在參雜了PtOEP金屬錯合物後,藉由量測螢光生命期發現,螢光生命期有變短的現象,顯示三重態激子的增加;而在雙層(Bilayer)有機太陽能元件中,在後退火30分鐘,溫度180度C下,明顯看到摻雜PtOEP的光電流和光電轉換效益有增加,證實激子的擴散長度確實有增加。另外,與此實驗對照下,我們也嘗試用Ir(mppy)3的綠光放光材料和清大化學所季昀老師實驗室所合成的鏀金屬錯合物來比較。


    Organic solar cells have been research in recent years. In order to raise short circuit current (Jsc) and Power consumption efficiency (PCE), One of the improve method is to add the active layer thickness. That will result in more photons absorption and product more excitons. Then the exciton diffusion length and lifetime have become important. These are major discussions in the thesis.
    It is famous to dope metal complexes in conjugate polymer. Heavy metal effect cause excitons have spin-orbit coupling. Singlet excitons can be cross to the triplet state by intersystem crossing. Excitons lifetime will increase obviously. After we doped PtOEP in conjugate polymer and device, it find the decreasing exciton lifetime. In bilayer devices , it can find the exciton diffusion length increase. The bilayer devices fabrication was post anneal 30mins and in 180 degrees. The photocurrent and PCE also increase in evidence. Otherwise, we try other materials , like Ir(mppy)3 and Natural Ru(II) which was compound in Chi Yun laboratory of National Tsing Hua University , to compare with PtOEP .

    目錄 中文摘要 ……………………………………………………………………………Ⅰ 英文摘要 …………………………………………………………………………….II 致謝 ……………………………………………………………………………Ⅲ 目錄 ....................................................................................................................Ⅴ 圖引 ……………………………………………………………………………Ⅷ Chapter 1 導論 1.1 前言.…………………………………………………………………………1 1.2 太陽能電池的發展.…………………………………………………………1 1.3 有機太陽能的結構與特性.…………………………………………………2 1.4 研究動機………….…………………………………………………………4 1.5 論文架構……….……………………………………………………………4 Chapter 2 原理介紹 2.1 有機太陽能電池的基本原理………………………………………………5 2.1-1 Bulk Heterojunction有機太陽能電池結構 (Blend)…….……7 2.1-2 摻雜三重態金屬材料……………………………………...……8 2.1-3 有機太陽能電池雙層結構 (Bilayer)…………………………9 2.2 光致發光基本原理…………………………………………………………9 2.2-1 分子能量轉換機制(Energy Transfer)…………………………..…12 2.3 量測理論…………………………………………………………………13 2.3-1 時間相關單光子計數系統(TCSPC)……………………………..…14 2.3-2 TCSPC的實驗系統原理………………………………..………..…14 2.3-3 單光子的計數速度和統計……………………………………….16 2.3-4 單光子計數的時間解析…………………………………………....16 2.3-5 螢光壽命的測量………………………………………..…………..17 Chapter 3 樣品製作和實驗方法 3.1 材料介紹…………………………………………………………………18 3.1-1 Neutral Ru(II)………………………………………………...……18 3.1-2 PtOEP………………………………………………………………..21 3.1-3 Ir(mppy)3…………………………………………………..………..22 3.2 光致放光(PL)樣品的製作………………………………….………………24 3.3 Organic Solar cell元件製程方式…………………………………………24 3.4 太陽能電池I-V量測系統…………………………………………………26 3.5 暫態螢光生命期量測實驗儀器…………………………………………27 3.6 光致放光量測………………..…………………………………………28 3.6-1 螢光生命期擬合分析軟體Pico Quant (Global Fluorescence Decay Data Analysis Software)………………………………….....29 Chapter 4 實驗步驟和結果 4.1 Neutral Ru(П)光物理對於有機太陽能電池的影響…………………….…32 4.1-1 摻雜Neutral Ru(П)在溶劑DCB的暫態放光………………….…32 4.1-2 摻雜Neutral Ru(П)在溶劑Toluene的暫態放光…………………36 4.1-3 比較三種不同溶劑下摻雜Neutral Ru(П)至P3HT的放光情形…37 4.2 Neutral Ru(П)摻雜在P3HT/PCBM異質結構(Bulk Heterojunction)..........40 4.3 PtOEP 光物理對於有機太陽能電池的影響……………………………...42 4.3-1 摻雜PtOEP 的暫態放光………………………………………….42 4.3-2 P3HT與PtOEP的吸收與連續放光光譜…………………………44 4.3-3 摻雜不同濃度 PtOEP的暫態放光(Transient Photo Luminance)…48 4.4 PtOEP 摻雜在P3HT/PCBM異質結構(Bulk Heterojunction) ……………51 4.4-1 PtOEP不同濃度下對異質結構元件的影響………………………51 4.4-2 摻雜濃度10 % PtOEP在主動層不同轉速下…………………….52 4.4-3 Baytron P…………………………………………………………..54 4.5 PtOEP 摻雜在P3HT/C60 雙層元件結構………………………56 4.5-1 不同轉速下的雙層元件……………………………………….......56 4.5-2 增加後退火(post annealing)……………………………………….57 4.5-3 改變後退火(post annealing)溫度和陰極材料…………………60 4.6 Ir(mppy)3光物理對於有機太陽能電池的影響………………….62 4.6-1 摻雜Ir(mppy)3的暫態放光……………………………………62 4.7 Ir(mppy)3摻雜在P3HT/PCBM異質結構(Bulk Heterojunction)……64 4.8 Ir(mppy)3摻雜在P3HT/C60 雙層元件結構……………………………65 Chapter 5 結論 5.1 結論………………………………………………………………………68 Reference……………………………………………………………………………..69

    Reference

    [1] 張正華.李陵嵐.葉楚平.楊平華/著,有機與塑膠太陽能電池, 2008年03月19
    日, 五南出版社
    [2] Chia-Ming Yang, Chi-Hui Wu, Hua-Hsin Liao, Kuei-Yuan Lai,
    Hong-Ping Cheng, and Sheng-Fu Horng, Hsin-Fei Meng, Jow-Tsong Shy,
    APPLIED PHYSICS LETTERS 90, 133509 _2007_
    [3] Serap Gu¨nes,* Helmut Neugebauer, and Niyazi Serdar Sariciftci, Chem. Rev. 2007, 107, 1324-1338
    [4] X. M. Jiang, Ronald Osterbacka, Chong P. An, and Z. Valy Vardeny, Synthetic
    Metals 137 (2003) 1465-1468
    [5] Remi De Bettignies, Jocelyne Leroy, Muriel Firon, Carole Sentein, Synthetic
    Metals 156 (2006) 510-513
    [6] Yan Shao ,Yang Yang* , Adv. Mater. 2005, 17, 2841–2844
    [7] Florent Monestier, Jean-Jacques Simon, Philippe Torchio, Ludovic Escoubas,
    Francois Flory, Sandrine Bailly, Remi de Bettignies, Stephane Guillerez,
    Christophe Defranoux, Solar Energy Materials & Solar Cells 91 (2007)
    405-410
    [8] Jessica E. Kroeze, Tom J. Savenije, Luis P. Candeias, John M. Warman, Laurens D.A. Siebbeles*, Solar Energy Materials & Solar Cells 85 (2005) 189–203
    [9] 黃春輝,李富友,黃岩誼/著, 光電功能超薄膜,2006年04月01日, 曉園
    出版社
    [10] Taiju Tsuboi, Nadeer Aljaroudi, Optical Materials 27 (2005) 1859-1863
    [11] 陳金鑫、黃孝文/著, OLED:有機電激發光材料與元件, 2005年09月05 日,
    五南出版社
    [12] H. H. Liao,1,2 H. F. Meng,1,* S. F. Horng,2 W. S. Lee,1 J. M. Yang,2 C. C.
    Liu,2 J. T. Shy,3 F. C. Chen,4 and C. S. Hsu5, PHYSICAL REVIEW B 74,
    245211 2006
    [13] M. Wahl, and R. Erdmann, Time-correlated single photon counting in
    fluorescence lifetime analysis, Photonik 1-2/2000
    [14] Steven C. Moss, Linda F. Halle, and Dean C. Marvin, IEEE TRANSACTIONS
    ON NUCLEAR SCIENCE, VOL. 42 NO. 6, DECEMBER 1995.
    [15] Yung-Liang Tung, Li-Shiuan Chen, Yun Chi,* Pi-Tai Chou,* Yi-Ming Cheng, Elise Y. Li, Gene-Hsiang Lee, Ching-Fong Shu,* Fang-Iy Wu, and Arthur J. Carty*, Adv. Funct. Mater. 2006, 16, 1615–1626
    [16] Xiaohui Yang, David C. Müller, Dieter Neher,* and Klaus Meerholz*, Adv. Mater. 2006, 18, 948–954
    [17] B. Kraabel, D. Moses, and A.J.Heeger, 1995 J. Chem. Phys. 103 (12) 22
    [18] Steffan Cook, Hideo Ohkita, and James R. Durrant, Youngkyoo Kim, Jessica
    J.Benson-Smith, Jenny Nelson, and Donal D. C. Bardley , APPLIED
    PHYSICS LETTERS 89, 101128 (2006)
    [19] Maria Antonietta Loi, Stefano Toffanin, Michele Muccini, Michael Forster,
    Ulrich Scherf, Markus Scharber, Adv. Funct. Mater. 2007, 17, 2111-2116
    [20] Cesare Soci, In-Wook Hwang, Daniel Moses, Zhengguo Zhu, David Waller,
    Russel Gaudiana, Christoph J. Brabec, and Alan J. Heeger, Adv. Funct. Mater.
    2007, 17, 632-636
    [21] Alain Geisera, Bin Fanb, Hadjar Benmansourb, Fernando Castrob, Jakob
    Heierb, Beat Kellerc, Karl Emanuel Mayerhoferc, Frank Nueschb, Roland
    Hanyb, Solar Energy Materials & Solar Cells 92 (2008) 464–473

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE