研究生: |
黃思璇 Huang, Szu-Hsuan |
---|---|
論文名稱: |
Dissection of regulatory elements in the promoter of Candida albicans virulence gene FTR1 白色念珠菌致病基因FTR1啟動子調控區域之分析研究 |
指導教授: |
藍忠昱
Lan, Chung-Yu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 白色念珠球菌 、高親和性鐵通透酶 、啟動子 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
白色念珠球菌 (Candida albicans)是人體內最常見的真菌共生菌。當宿主的免疫功能下降時,它會轉變成為病源菌,可能導致危及生命的全身性感染疾病。對於絕大多數生物體而言,鐵是一種必需的營養源。然而,於宿主體內,鐵極少以游離態存在,微生物可獲取之鐵含量極低。為了在此環境下生存,白色念珠球菌必須和宿主及其他微生物共同競爭鐵。研究發現白色念珠球菌已發展出許多不同的鐵攝取機制(iron-uptake systems),同時也被證實鐵攝取機制和其致病力有關,其中包含表現細胞膜上高親和性鐵通透酶Ftr1(high-affinity iron permease)。在老鼠實驗中證實,當剃除白色念珠球菌FTR1基因,會降低其致病力。FTR1基因也被發現只在低鐵的環境下會大量轉錄,然而,此基因被鐵調控的分子機制仍是未知。本篇論文主要在於分析FTR1基因啟動子(promoter)的基因序列及反式調節因子(trans-factors),進而探討FTR1基因的分子調控機制。實驗發現兩段受鐵調控的順式調節因子(cis-elements),命名為IRE1及IRE2,參與調控FTR1基因在低鐵環境下大量表現。利用電腦序列分析發現,IRE1及IRE2分別擁有NRE及CCAAT兩種已知的順式調節因子序列存在。透過電泳遷移率檢驗(electrophoretic mobility shift assay)和定點突變分析(site-directed mutagenesis),在低鐵環境下,CCAAT結合因子(CCAAT-binding factor)及Nrg1可以直接辨識並結合FTR1啟動子上的特定序列。綜合而言,本研究幫助我們了解白色念珠球菌致病力相關基因對宿主環境反應的調控機制。
Abstract
Candida albicans is the most common fungus in humans. It can become a pathogen and cause systemic infection in immunocompromised persons. Iron is an essential nutrient for almost every organism. However, free iron is highly limiting within the host. In order to acquire iron and survive under such an iron-restricted condition, C. albicans must compete with their host and other microorganisms. Moreover, previous studies have demonstrated that possession of specialized iron-uptake systems of C. albicans and some of them are related to its virulence. One is the FTR1 gene, which encodes a transmembrane high-affinity iron permease; cells lacking of FTR1 attenuate C. albicans virulence in a mouse model of systemic infection. Interestingly, the expression of FTR1 gene is highly induced under iron-limited environment. However, the molecular mechanism of FTR1 gene regulation in response to iron availability is mostly unknown. In this work, the main focus is to dissect the cis-regulatory elements and trans-factors that are involved in FTR1 gene regulation. Two cis-regulatory elements, IRE1 and IRE2, were revealed in the upstream promoter region of FTR1 and they were responsible for FTR1 gene activation at the low-iron condition. Using computational analysis, NRE and CCAAT box were found to exist within the IRE1 and IRE2 elements. EMSA and site-directed mutagenesis were undertaken to demonstrate that CCAAT-binding factors (CBF) and Nrg1 can directly bind to the regulatory sequences of FTR1 promoter under the low-iron condition. Taken together, this work provides important insight into regulation of C. albicans virulence-related gene in response to the host environment.
Reference
Abe, F., M. Tateyma, et al. (1985). "Experimental candidiasis in iron overload." Mycopathologia 89(1): 59-63.
Almeida, R., S. Brunke, et al. (2008). "The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin." PLoS Pathogens 4(11).
Almeida, R., D. Wilson, et al. (2009). "Candida albicans iron acquisition within the host." FEMS yeast research 9(7): 1000-1012.
An, Z., B. Mei, et al. (1997). "The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor." The EMBO journal 16(7): 1742.
Baek, Y., M. Li, et al. (2008). "Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors." Eukaryotic Cell 7(7): 1168.
Barluzzi, R., S. Saleppico, et al. (2002). "Iron overload exacerbates experimental meningoencephalitis by Cryptococcus neoformans." Journal of neuroimmunology 132(1-2): 140-146.
Blaiseau, P., E. Lesuisse, et al. (2001). "Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast." Journal of Biological Chemistry 276(36): 34221.
Brakhage, A., A. Andrianopoulos, et al. (1999). "HAP-like CCAAT-binding complexes in filamentous fungi: implications for biotechnology." Fungal Genetics and Biology 27(2-3): 243-252.
Braun, B., W. Head, et al. (2000). "Identification and characterization of TUP1-regulated genes in Candida albicans." Genetics 156(1): 31.
Bucher, P. (1990). "Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences." Journal of Molecular Biology 212(4): 563-578.
Buschlen, S., J. Amillet, et al. (1900). "The S. cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression." Comparative and functional genomics 4(1): 37-46.
Calderone, R. (2002). Candida and candidiasis, Amer Society for Microbiology.
De Luca, N. and P. Wood (2000). "Iron uptake by fungi: contrasted mechanisms with internal or external reduction." Advances in microbial physiology 43: 39.
Eck, R., S. Hundt, et al. (1999). "A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption." Microbiology 145(9): 2415.
Eggimann, P., J. Garbino, et al. (2003). "Epidemiology of Candida species infections in critically ill non-immunosuppressed patients." The Lancet Infectious Diseases 3(11): 685-702.
Fidel Jr, P., J. Vazquez, et al. (1999). "Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans." Clinical microbiology reviews 12(1): 80.
Gaillardin, C., H. Tournu, et al. (2001). "Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1." Molecular microbiology 42(4): 981-993.
Gaur, N., R. Manoharlal, et al. (2005). "Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element." Biochemical and biophysical research communications 332(1): 206-214.
Gillum, A., E. Tsay, et al. (1984). "Isolation of the Candida albicans gene for orotidine-5¡¬-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations." Molecular and General Genetics MGG 198(1): 179-182.
Haas, H. (2003). "Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage." Applied microbiology and biotechnology 62(4): 316-330.
Haas, H., I. Zadra, et al. (1999). "The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake." Journal of Biological Chemistry 274(8): 4613.
Halliwell, B. and J. Gutteridge (1992). "Biologically relevant metal ion-dependent hydroxyl radical generation an update." FEBS letters 307(1): 108-112.
Hammacott, J., P. Williams, et al. (2000). "Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant." Microbiology 146(4): 869.
Hentze, M., M. Muckenthaler, et al. (2004). "Balancing Acts:: Molecular Control of Mammalian Iron Metabolism." Cell 117(3): 285-297.
Heymann, P., M. Gerads, et al. (2002). "The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion." Infection and immunity 70(9): 5246.
Hortschansky, P., M. Eisendle, et al. (2007). "Interaction of HapX with the CCAAT-binding complex¡Xa novel mechanism of gene regulation by iron." The EMBO journal 26(13): 3157.
Hu, C., C. Bai, et al. (2002). "Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans." Journal of Biological Chemistry 277(34): 30598.
Ibrahim, A., S. Filler, et al. (1998). "Secreted aspartyl proteinases and interactions of Candida albicans with human endothelial cells." Infection and immunity 66(6): 3003.
Johnson, D., K. Cano, et al. (2005). "Novel regulatory function for the CCAAT-binding factor in Candida albicans." Eukaryotic Cell 4(10): 1662.
Johnson, L. (2008). "Iron and siderophores in fungal-host interactions." Mycological research 112(2): 170-183.
Kaneko, A., T. Umeyama, et al. (2006). "Tcc1p, a novel protein containing the tetratricopeptide repeat motif, interacts with Tup1p to regulate morphological transition and virulence in Candida albicans." Eukaryotic Cell 5(11): 1894.
Kaplan, C. and J. Kaplan (2009). "Iron acquisition and transcriptional regulation." Journal of the American Chemical Society 131(35): 12497-12515.
Knight, S. and A. Dancis (2006). "Reduction of 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT) is dependent on CaFRE10 ferric reductase for Candida albicans grown in unbuffered media." Microbiology 152(8): 2301.
Knight, S., E. Lesuisse, et al. (2002). "Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator." Microbiology 148(1): 29.
Knight, S., G. Vilaire, et al. (2005). "Iron acquisition from transferrin by Candida albicans depends on the reductive pathway." Infection and immunity 73(9): 5482.
Kontoyiannis, D., G. Chamilos, et al. (2007). "Increased bone marrow iron stores is an independent risk factor for invasive aspergillosis in patients with high-risk hematologic malignancies and recipients of allogeneic hematopoietic stem cell transplantation." Cancer 110(6): 1303-1306.
Lan, C., G. Rodarte, et al. (2004). "Regulatory networks affected by iron availability in Candida albicans." Molecular microbiology 53(5): 1451-1469.
Lotz, H., K. Sohn, et al. (2004). "RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1." Eukaryotic Cell 3(3): 776.
Maity, S., T. Vuorio, et al. (1990). "The B subunit of a rat heteromeric CCAAT-binding transcription factor shows a striking sequence identity with the yeast Hap2 transcription factor." Proceedings of the National Academy of Sciences 87(14): 5378.
Martinez-Pastor, M., G. Marchler, et al. (1996). "The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)." The EMBO journal 15(9): 2227.
McNabb, D. and I. Pinto (2005). "Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae." Eukaryotic Cell 4(11): 1829.
McNabb, D., K. Tseng, et al. (1997). "The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor." Molecular and cellular biology 17(12): 7008.
McNabb, D., Y. Xing, et al. (1995). "Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding." Genes & Development 9(1): 47.
Mercier, A., B. Pelletier, et al. (2006). "A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe." Eukaryotic Cell 5(11): 1866.
Moors, M., T. Stull, et al. (1992). "A role for complement receptor-like molecules in iron acquisition by Candida albicans." Journal of Experimental Medicine 175(6): 1643.
Murad, A., P. Leng, et al. (2001). "NRG1 represses yeast hypha morphogenesis and hypha-specific gene expression in Candida albicans." The EMBO journal 20(17): 4742.
Naglik, J., S. Challacombe, et al. (2003). "Candida albicans secreted aspartyl proteinases in virulence and pathogenesis." Microbiology and molecular biology reviews 67(3): 400.
Navarro-Garcia, F., M. Sanchez, et al. (2006). "Virulence genes in the pathogenic yeast Candida albicans." FEMS microbiology reviews 25(2): 245-268.
Nicholls, S., M. Straffon, et al. (2004). "Msn2-and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans." Eukaryotic Cell 3(5): 1111.
Odds, F., A. Brown, et al. (2003). "Antifungal agents: mechanisms of action." Trends in microbiology 11(6): 272-279.
Osada, S., H. Yamamoto, et al. (1996). "DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family." Journal of Biological Chemistry 271(7): 3891.
Pelletier, B., J. Beaudoin, et al. (2002). "Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe." Journal of Biological Chemistry 277(25): 22950.
Pelletier, B., A. Mercier, et al. (2007). "Expression of Candida albicans Sfu1 in fission yeast complements the loss of the iron-regulatory transcription factor Fep1 and requires Tup co-repressors." Yeast 24(10): 883-900.
Pfaller, M., D. Diekema, et al. (2007). "Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997-2005: An 8.5-year analysis of susceptibilities of Candida and other yeast species to fluconazole and voriconazole by CLSI standardized disk diffusion testing." Journal of clinical microbiology.
Ramanan, N. and Y. Wang (2000). "A high-affinity iron permease essential for Candida albicans virulence." Science 288(5468): 1062.
Ramsdale, M., L. Selway, et al. (2008). "MNL1 regulates weak acid-induced stress responses of the fungal pathogen Candida albicans." Molecular biology of the cell 19(10): 4393.
Reus, O., A. Vik, et al. (2004). "The SAT1 flipper, an optimized tool for gene disruption in Candida albicans." Gene 341: 119-127.
Ruan, S. and P. Hsueh (2009). "Invasive Candidiasis: An Overview from Taiwan." Journal of the Formosan Medical Association 108(6): 443-451.
Shakoury-Elizeh, M., J. Tiedeman, et al. (2004). "Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae." Molecular biology of the cell 15(3): 1233.
Singh, A., N. Dhillon, et al. (2008). "Identification and purification of CREB like protein in Candida albicans." Molecular and cellular biochemistry 308(1): 237-245.
Sudbery, P., N. Gow, et al. (2004). "The distinct morphogenic states of Candida albicans." Trends in microbiology 12(7): 317-324.
Sutak, R., E. Lesuisse, et al. (2008). "Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence." Trends in microbiology 16(6): 261-268.
Uhl, M. and A. Johnson (2001). "Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans." Microbiology 147(5): 1189.
Van Huijsduijnen, R., X. Li, et al. (1990). "Co-evolution from yeast to mouse: cDNA cloning of the two NF-Y (CP-1/CBF) subunits." The EMBO journal 9(10): 3119.
Vanden, B., F. Dromer, et al. (1998). "Antifungal drug resistance in pathogenic fungi." Medical mycology: official publication of the International Society for Human and Animal Mycology 36: 119.
Weinberg, E. (2009). "Iron availability and infection." Biochimica et Biophysica Acta (BBA)-General Subjects 1790(7): 600-605.
Weissman, Z. and D. Kornitzer (2004). "A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization." Molecular microbiology 53(4): 1209-1220.
Weissman, Z., R. Shemer, et al. (2008). "An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans." Molecular microbiology 69(1): 201-217.
Welch, K., M. Van Eden, et al. (2001). "Modification of ferritin during iron loading." Free Radical Biology and Medicine 31(8): 999-1006.
Winkelmann, G. (2002). "Microbial siderophore-mediated transport." Biochemical Society Transactions 30: 691-696.
Wisplinghoff, H., T. Bischoff, et al. (2004). "Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study." Clinical Infectious Diseases 39: 309-317.
Yamada-Okabe, T., O. Shimmi, et al. (1996). "Isolation of the mRNA-capping enzyme and ferric-reductase-related genes from Candida albicans." Microbiology 142(9): 2515.
Yamaguchi-Iwai, Y., A. Dancis, et al. (1995). "AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae." The EMBO journal 14(6): 1231.
Yamaguchi-Iwai, Y., R. Ueta, et al. (2002). "Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae." Journal of Biological Chemistry 277(21): 18914.