研究生: |
鄭伊芸 Cheng, Yi-Yun |
---|---|
論文名稱: |
利用摺板型蛋白質建構可能的肝素二維結合模型 Constructing Two-Dimensional Binding Model of Heparin by Utilizing a β-Sheet Presenting Miniature Protein |
指導教授: |
呂平江
Lyu, Ping-Chiang |
口試委員: |
楊裕雄
張大慈 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 利用摺板型蛋白質建構可能的肝素二維結合模型 |
外文關鍵詞: | Construction of potential two-dimensional heparin-binding model by utilizing a β-sheet presenting miniature protein |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醣胺素是具結構和功能多樣性的寡糖分子;這些分子已被証明和許多生物反應有關,例如細胞附著、移動、及經由與不同蛋白作用(如蛋白酶、細胞激素、生長激素、黏著分子等)的細胞分化現象。醣胺素分成六種,包括:硫酸乙醯肝素(HS)、肝素、硫酸軟骨素(CS)、硫酸皮膚素(DS)、硫酸角質素(KS)、透明質酸(HA);在所有醣胺素裡,肝素是最被充分研究的,並且在1935年開始用作臨床抗凝血劑。最近的研究開始著重於肝素在生理上的重要功能,如在肥大細胞中肝素對特定顆粒酶之儲存的必要性等。對於肝素和帶正電蛋白間的作用除了電性交互作用外並不清楚。愈來愈多肝素結合蛋白被定性後,一般認為蛋白上與肝素的結合位也會受遠處連續胺基酸殘基影響而形成較好的結合表面。然而,包括之前研究提出的肝素結合關鍵保留序列,XBBXBX和XBBBXXBX,並沒有文獻能完整提供肝素-蛋白質的結合模式。因此我們利用以結構為導向的蛋白質轉接工程(protein grafting)來闡述蛋白質和肝素的結合位向。我們將一個熱穩定的蛋白模組,免疫球蛋白G結合蛋白G的B1模組,和肝素作用以獲得平面空間上的結合資訊。利用螢光輔助醣類電泳分析法(fluorophore-assisted carbohydrate electrophoresis analysis),我們可以驗證B1模組四條折板構成的平面上正電胺基酸和肝素結合之數量和位向。結果顯示蛋白質二維空間上特定的間隔和胺基酸偏好(精氨酸)在與肝素結合的過程中扮演重要角色。
Glycosaminoglycans (GAGs) are polysaccharides with structural and functional diversity. These molecules have been demonstrated to be involved in a wide range of biological activities such as cell adhesion, cell mobility and cell proliferation through interacting with various cellular proteins, such as protease, cytokines, growth factors, adhesion molecules and so on. There are six classes of GAGs, including heparin sulfate (HS), heparin, chondroitin sulfate (CS), dermatan sulfate (DS), keratin sulfate (KS) and hyaluronic acid (HA); of all the GAG family members, heparin is the most well studied and has been used clinically as an anticoagulant since 1935. Recent experiments have shed light on the physiological significance of heparin which is essential for the storage of specific granule proteases in mast cells. The details of the interaction between heparin and positively charged proteins are not known except the electrostatic interactions seem to play an important role in this biomolecular association. With the characterization of more heparin-binding proteins, it was understood that the binding epitopes can also be defined by sequentially remote residues that form an optimal binding surface. However, none of these studies, such as the early studied key structural motifs of heparin-binding sequences XBBXBX and XBBBXXBX, have completely addressed the binding pattern for heparin-protein interactions. Therefore, we use a structure-guided approach, termed “protein grafting”, to elucidate the protein-heparin binding pattern. We targeted the heparin utilizing a thermal stable domain, B1 domain of IgG-binding protein G, and its derivatives because of its firmly packed conformation to accomplish spatial binding information. Through the planer four-beta-sheet scaffold design of B1 domain, the number and position of the positive amino acids within were verified by applying fluorophore-assisted carbohydrate electrophoresis analysis (FACE). The results reveal that the specific spacing and favored residue (arginine) seemed to be critical for heparin binding process.
(1) Handel, T. M., Johnson, Z., Crown, S. E., Lau, E. K., and Proudfoot, A. E. (2005) Regulation of protein function by glycosaminoglycans--as exemplified by chemokines. Annu Rev Biochem 74, 385-410.
(2) Reuter, G., and Gabius, H. J. (1999) Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol Life Sci 55, 368-422.
(3) Mulloy, B., and Forster, M. J. (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10, 1147-56.
(4) Rabenstein, D. L. (2002) Heparin and heparan sulfate: structure and function. Nat Prod Rep 19, 312-31.
(5) Fromm, J. R., Hileman, R. E., Caldwell, E. E., Weiler, J. M., and Linhardt, R. J. (1997) Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys 343, 92-100.
(6) Distefano, M. D., Zhong, A., and Cochran, A. G. (2002) Quantifying beta-sheet stability by phage display. J Mol Biol 322, 179-88.
(7) Campos-Olivas, R., Aziz, R., Helms, G. L., Evans, J. N., and Gronenborn, A. M. (2002) Placement of 19F into the center of GB1: effects on structure and stability. FEBS Lett 517, 55-60.
(8) Lindman, S., Xue, W. F., Szczepankiewicz, O., Bauer, M. C., Nilsson, H., and Linse, S. (2006) Salting the charged surface: pH and salt dependence of protein G B1 stability. Biophys J 90, 2911-21.
(9) Ding, K., Louis, J. M., and Gronenborn, A. M. (2004) Insights into conformation and dynamics of protein GB1 during folding and unfolding by NMR. J Mol Biol 335, 1299-307.
(10) Sari, N., Alexander, P., Bryan, P. N., and Orban, J. (2000) Structure and dynamics of an acid-denatured protein G mutant. Biochemistry 39, 965-77.
(11) Woods, A., Longley, R. L., Tumova, S., and Couchman, J. R. (2000) Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch Biochem Biophys 374, 66-72.
(12) Schagger, H. (2006) Tricine-SDS-PAGE. Nat Protoc 1, 16-22.
(13) Calabro, A., Benavides, M., Tammi, M., Hascall, V. C., and Midura, R. J. (2000) Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology 10, 273-81.
(14) Volpi, N., and Maccari, F. (2006) Electrophoretic approaches to the analysis of complex polysaccharides. J Chromatogr B Analyt Technol Biomed Life Sci 834, 1-13.
(15) Jackson, P. (1994) The analysis of fluorophore-labeled glycans by high-resolution polyacrylamide gel electrophoresis. Anal Biochem 216, 243-52.
(16) Seyfried, N. T., Blundell, C. D., Day, A. J., and Almond, A. (2005) Preparation and application of biologically active fluorescent hyaluronan oligosaccharides. Glycobiology 15, 303-12.
(17) Dubreil, L., Compoint, J. P., and Marion, D. (1997) Interaction of Puroindolines with Wheat Flour Polar Lipids Determines Their Foaming Properties. Journal of agricultural and food chemistry 45, 108-116.
(18) Rajagopal, S., Meyer, S. C., Goldman, A., Zhou, M., and Ghosh, I. (2006) A minimalist approach toward protein recognition by epitope transfer from functionally evolved beta-sheet surfaces. J Am Chem Soc 128, 14356-63.
(19) Margalit, H., Fischer, N., and Ben-Sasson, S. A. (1993) Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem 268, 19228-31.
(20) Lindhout, D. A., Thiessen, A., Schieve, D., and Sykes, B. D. (2003) High-yield expression of isotopically labeled peptides for use in NMR studies. Protein Sci 12, 1786-91.
(21) Dalal, S., and Regan, L. (2000) Understanding the sequence determinants of conformational switching using protein design. Protein Sci 9, 1651-9.
(22) Karousou, E. G., Militsopoulou, M., Porta, G., De Luca, G., Hascall, V. C., and Passi, A. (2004) Polyacrylamide gel electrophoresis of fluorophore-labeled hyaluronan and chondroitin sulfate disaccharides: application to the analysis in cells and tissues. Electrophoresis 25, 2919-25.
(23) Karousou, E. G., Porta, G., De Luca, G., and Passi, A. (2004) Analysis of fluorophore-labelled hyaluronan and chondroitin sulfate disaccharides in biological samples. J Pharm Biomed Anal 34, 791-5.
(24) Viola, M., Karousou, E. G., Vigetti, D., Genasetti, A., Pallotti, F., Guidetti, G. F., Tira, E., De Luca, G., and Passi, A. (2006) Decorin from different bovine tissues: study of glycosaminoglycan chain by PAGEFS. J Pharm Biomed Anal 41, 36-42.
(25) Lee, S. C., Guan, H. H., Wang, C. H., Huang, W. N., Tjong, S. C., Chen, C. J., and Wu, W. G. (2005) Structural basis of citrate-dependent and heparan sulfate-mediated cell surface retention of cobra cardiotoxin A3. J Biol Chem 280, 9567-77.
(26) Sachchidanand, Lequin, O., Staunton, D., Mulloy, B., Forster, M. J., Yoshida, K., and Campbell, I. D. (2002) Mapping the heparin-binding site on the 13-14F3 fragment of fibronectin. J Biol Chem 277, 50629-35.
(27) Jayaraman, G., Wu, C. W., Liu, Y. J., Chien, K. Y., Fang, J. C., and Lyu, P. C. (2000) Binding of a de novo designed peptide to specific glycosaminoglycans. FEBS Lett 482, 154-8.
(28) Verrecchio, A., Germann, M. W., Schick, B. P., Kung, B., Twardowski, T., and San Antonio, J. D. (2000) Design of peptides with high affinities for heparin and endothelial cell proteoglycans. J Biol Chem 275, 7701-7.
(29) Vyas, A. A., Pan, J. J., Patel, H. V., Vyas, K. A., Chiang, C. M., Sheu, Y. C., Hwang, J. K., and Wu, W. (1997) Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif. J Biol Chem 272, 9661-70.
(30) San Miguel, M., Marrington, R., Rodger, P. M., Rodger, A., and Robinson, C. (2003) An Escherichia coli twin-arginine signal peptide switches between helical and unstructured conformations depending on the hydrophobicity of the environment. Eur J Biochem 270, 3345-52.
(31) Smith, T. J., Stains, C. I., Meyer, S. C., and Ghosh, I. (2006) Inhibition of beta-amyloid fibrillization by directed evolution of a beta-sheet presenting miniature protein. J Am Chem Soc 128, 14456-7.
(32) Liu, S., Liu, S., Zhu, X., Liang, H., Cao, A., Chang, Z., and Lai, L. (2007) Nonnatural protein-protein interaction-pair design by key residues grafting. Proc Natl Acad Sci U S A 104, 5330-5.
(33) Gemperli, A. C., Rutledge, S. E., Maranda, A., and Schepartz, A. (2005) Paralog-selective ligands for bcl-2 proteins. J Am Chem Soc 127, 1596-7.
(34) Jee, J., Byeon, I. J., Louis, J. M., and Gronenborn, A. M. (2008) The point mutation A34F causes dimerization of GB1. Proteins 71, 1420-31.
(35) O'Neil, K. T., Bach, A. C., 2nd, and DeGrado, W. F. (2000) Structural consequences of an amino acid deletion in the B1 domain of protein G. Proteins 41, 323-33.
(36) Goehlert, V. A., Krupinska, E., Regan, L., and Stone, M. J. (2004) Analysis of side chain mobility among protein G B1 domain mutants with widely varying stabilities. Protein Sci 13, 3322-30.
(37) Ramirez-Alvarado, M., Cocco, M. J., and Regan, L. (2003) Mutations in the B1 domain of protein G that delay the onset of amyloid fibril formation in vitro. Protein Sci 12, 567-76.
(38) Meyer, S. C., Huerta, C., and Ghosh, I. (2005) Single-site mutations in a hyperthermophilic variant of the B1 domain of protein G result in self-assembled oligomers. Biochemistry 44, 2360-8.
(39) Honda, S., Kobayashi, N., and Munekata, E. (2000) Thermodynamics of a beta-hairpin structure: evidence for cooperative formation of folding nucleus. J Mol Biol 295, 269-78.
(40) Busby, T. F., Argraves, W. S., Brew, S. A., Pechik, I., Gilliland, G. L., and Ingham, K. C. (1995) Heparin binding by fibronectin module III-13 involves six discontinuous basic residues brought together to form a cationic cradle. J Biol Chem 270, 18558-62.
(41) McKenzie, E. A. (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151, 1-14.