簡易檢索 / 詳目顯示

研究生: 劉彥岡
Yen-Kang Liu
論文名稱: 奈米鑽石沉積及其在表面聲波元件、電子場發射上應用之研究
Study on Synthesis of Nanocrystalline Diamond and Applications on SAW, and Electron Field Emission Devices
指導教授: 左培倫教授
Pei-Lum Tso
林諭男教授
I-Nan Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 119
中文關鍵詞: 奈米鑽石表面聲波元件場發射化學氣相沉積
外文關鍵詞: nanocrystalline diamond, surface acoustic wave, field emission, CVD
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    隨著通訊時代的來臨,具寬頻及行動化特性之通訊系統因應而生,高頻率、高資料傳輸率之元件不可或缺,表面聲波(surface acoustic wave, SAW )濾波器即為一例。本研究之目的是製作以奈米鑽石為基板之表面聲波元件。奈米鑽石為一新型態之鑽石膜,其因具奈米等級之鑽石晶粒而得其名。奈米鑽石膜之表面粗糙度通常在50奈米之下,不需拋光即可用作表面聲波元件之基板。
    SAW元件的主要構成為壓電材料及一組指狀電極IDT。其作用原理乃利用壓電材料受到外加電壓時材料產生變形的特性,當在輸入端IDT施以交流電壓時,材料的變形將在表面產生機械波,電壓訊號因此轉換成表面聲波傳遞。當聲波傳遞至輸出端時,在壓電材料及IDT之作用下,機械波又將轉換回電壓訊號。轉換過程中,表面聲波之波長由指狀電極之間隔決定,由波傳遞之公式可知速度(V)等於頻率(f)與波長(λ)之乘積,特定之壓電材料及指狀電路之設計(V、λ固定),決定了表面聲波之頻率,即僅有特定頻率之能量得以藉表面聲波傳遞。由於鑽石具有最高之波傳遞速度,因此用做基板可大大提昇表面聲波元件之工作頻率。
    本研究成功地在奈米鑽石(NCD)上製作表面聲波元件(IDT/ZnO/NCD/Si結構),得到工作頻率較搭配傳統壓電材料-鈮酸鋰(LiNbO3) 者提昇近2倍,證實NCD保有鑽石優越的材料特性,極適用於高頻表面聲波元件之基板。此外,本研究比較不同NCD膜厚對SAW頻率的影響,證實當奈米鑽石膜厚達到一定值時(3/4波長),表面聲波元件之工作頻率已有明顯之提昇。


    The extreme physical and chemical properties of CVD diamond films have attracted many scientists and technologists to explore broad and often multidisciplinary applications. Nanocrystalline diamond (NCD) is a special form of CVD consisting of nanometer-sized diamond grains contributed by the high secondary nucleation rate on the growing surface in the argon-rich/hydrogen-poor ambient. The properties along with the microstructure of CVD diamond are thus modified by changing the gas-phase chemistry. Because of the small crystalline size compare to conventional microcrystalline diamond (MCD), NCD films exhibit smooth surfaces and are, therefore, of great value to many practical applications that require smooth diamond coatings such as SAW devices. The electrical properties of the diamond films also have drastic changes, for example going from an insulating to an electrically conducting material as a result of the network of conducted sp2 grain boundaries existed in NCD films. Further doping NCD with nitrogen will improve its electrical properties, such as conductivity and electron field emission. Control over the microstructure from micro-scale to nano-scale diamond grains therefore gives us the opportunity to exploit many of the unique properties of diamond and reach the full utilization of diamond as an engineering material.
    This work is organized in three sections: introduction, growth of NCD, and applications of NCD. The introduction includes revolution from carbon to CVD diamond (Chap. 1) showing the basic ideas from carbon atom, sp3 carbon bond, diamond structure to CVD process, and nanocrystalline diamond (Chap. 2) revealing in details the so-called NCD along with its growth mechanism, the latest techniques to deposit NCD films. The second section, growth of NCD, covers the study of co-deposition of MCD and NCD (Chap.3), and nucleation of NCD films (Chap.4). The former investigated the reported compositional mapping for MCD and NCD growth and demonstrated local high concentration of atomic hydrogen near the substrate contributed to the MCD growth in spite of the low/no hydrogen addition in a methane–argon mixture that was previously reported to grow only NCD. Nucleation, which is essential for NCD, will affect morphology, growth rate, adhesion of NCD films, and their applications. Various seeding process and the related effects are presented and discussed in Chap. 4.
    The final section is applications of NCD including SAW devices on NCD (Chap.5), electric field emission-doping of NCD (Chap.6), and advance applications of NCD (Chap. 7). Diamond has the hardest Young’s module showing the highest propagation speed among all materials. NCD is believed to have the same characteristic so that SAW devices on NCD can promote the operating frequency to meet the emerging demands for high-frequency communication. Chap. 5 describes introduction, theoretic model, and fabrication of SAW devices based on IDT/ZnO/NCD structure and demonstrates that NCD exhibits similar propagation speed as natural diamond. By means of doping, not only the structure but properties of NCD can be modified (Chap. 6). Nitrogen doping, which can be done by adding N2 to the hydrocarbon/argon mixtures, promotes the performance of NCD films in electrical properties, such as field emission and conductivity. Addition of hydrogen helps stabilize the plasma and contributes to the deposition of more phase-pure NCD. Their effects on NCD films will be reported in Chap. 6. The advance applications of NCD, described in Chap. 7, includes MEMS and biosensors. Diamond is a much better material compared to Si for MEMS because of its superior mechanical, chemical, thermal, electrical and tribological properties that make it possible to produce high performance diamond based MEMS devices that could work more reliably, especially in extreme environments. The fully biocompatible properties of diamond, on the other hand, make diamond, especially NCD, become an ideal material for biosensors.

    Contents Introduction 1 Chapter 1.Revolution from carbon to CVD diamond 2 Structure of carbon atom 2 Hybridization and sp3, sp2 carbon bond 3 Structure and properties of diamond and graphite 4 Synthesis of diamond 5 CVD process 6 CVD diamond 6 CVD diamond deposition model 7 Summary 9 Chapter 2.Nanocrystalline diamond 16 Microcrystalline diamond (MCD) 16 Limitations of MCD 17 Nanocrystalline diamond (NCD) 17 Growth mechanism of nanocrystalline diamond 18 Paper review of NCD deposition 19 Summary 22 Growth of NCD 27 Chapter 3. Co-deposition of MCD and NCD 28 Compositional mapping for MCD/NCD growth 28 Experimental 30 Results and Discussions 30 2% or without H2 addition 35 Summary 38 Chapter 4. Nucleation of NCD films 46 Nucleation of CVD diamond films 46 Experimental 47 Growth of NCD and MCD films 48 Results and Discussions 49 Summary 53 Applications of NCD 59 Chapter 5. SAW devices on NCD 60 I.SAW devices 60 Introduction 60 Theoretical study of layered SAW device 62 Wave propagations in the c-axis orientatedZnO films 66 Propagation in diamond layer 68 Boundary conditions 70 Numerical simulation 70 II.Preparation of NCD for SAW devices 72 Summary 73 III.Preparation of piezoelectric film, ZnO 74 Introduction 74 Reactive sputtering 75 IV. Fabrication and measurement of SAW devices 75 Summary 76 Chapter 6. Doping of nanocrystalline diamond 84 Nitrogen doping in NCD 84 Experimental 85 Results and discussion of nitrogen doping 86 Results and discussion of hydrogen addition 89 Summary 93 Chapter 7.Advance applications of NCD 103 I.NCD for MEMS/NEMS 103 Introduction 103 Diamond MEMS and NEMS applications 104 II.Immobilization of antibodies and bacterial binding on NCD 106 Introduction 106 Experimental 106 Results and Discussions 107 Reference 112

    Reference:
    [1] Handbook of Carbon, Graphite, Diamond and Fullerenes- Properties, Processing and Applications, William Andrew Publishing/Noyes, 1993
    [2] Diamond Growth and Films, Universities’ Carbon Films And Materials Group, Elsevier, 1989.
    [3] Diamond Films And Coatings, Noyes, 1992
    [4] Handbook of Chemical Vapor Deposition-Principles, Technology and Applications (2nd Edition), William Andrew Publishing/Noyes, 1999
    [5] Yarborough, W. A., “Diamond Growth with Locally Supplied Methane and Acetylene,” J. Mater. Res., 7(2):379–383 (1992)
    [6] Yarborough, W.A., “Thermochemical and Kinetic Considerations in Diamond Growth,” Diamond Films and Technology, 1(3):165–180 (1992)
    [7] Yasuda, T., Ihara, M., Miyamoto, K., Genchi, Y., and Komiyama, H., “Gas Phase Chemistry Determining the Quality of CVD Diamond,” Proc. 11th. Int. Conf. on CVD, (K. Spear and G. Cullen, eds.), pp. 134–140, Electrochem. Soc.,Pennington, NJ, 1990
    [8] Frenklash, M., and Spear, K., “Growth Mechanism of Vapor Deposited Diamond”, J. of Mat. Res., 3(1):133–1406, 1988
    [9] Garrison, B. J., Dawnhashi, E., Srivastava, D., and Brenner, D. W., “Molecular Dynamics Simulations of Dimer Opening on a Diamond {001}(2x1) Surface,” Science, 255:835–838, 1992
    [10] “Norton CVD Diamond,” Technical Bulletin from Norton Co., Northboro, MA , 1992
    [11] “Diamond Coating, A World of Opportunity,” Technical Brochure, Genasystems Inc., Worthington, OH, 1991
    [12] Hsu, W. L., “Chemical Erosion of Grahite by Hydrogen Impaact: A Summary of the Database Relevant to Diamond Film Growth,” J. Vac. Sci. Technol. A, (6)3:1803–1811 (May/June, 1988
    [13] http://phycomp.technion.ac.il/~david/thesis/node3.html
    [14] Schafer, L., Sattler, M., and Klages, C. P., Applications of Diamond Films and Related Materials, (Y. Tzeng, et al., eds.), 453-460, Elsevier Science Publishers (1991)
    [15] ”Diamond Films And Coatings”, Noyes, 1992.
    [16] D. Zhou, D.M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, J. Appl. Phys. 84(1998), p1981.
    [17] D.M. Gruen, Annu. Rev. Mater. Sci. 1999, 29, p211-259
    [18] T.Lin, G.Y.Yu, A.T.S.Wee, and Z.X.Shen, Applied Physics Letters Vol.77. No.12 (2000), p2692.
    [19] A.N.Jones, W.Ahmed, I.U.Hassan, C.A.Rego, H.Sein, M.Amar and M.J.Jackson, Journals of Physics: Condensed Matter 15 (2003), S2969.
    [20] J.C. Angus and C.C. Hayman, Science 241 (1988), p913.
    [21] J. Birrell, J.A. Carlisle, O. Auciello, D.M. Gruen, and J.M. Gibson, App. Phys. Letters Vol. 81, No.12, (2002), p2235-2237
    [22] O. Matsumoto, H. Toshima and Y. Kamazaki, Thin Solid Films 128 (1985),p341.
    [23] O. Matsumoto and T. Katagiri, Thin Solid Films 147 (1987),p283.
    [24] W. Zhu, A. Inspektor, A.R. Badzian, T. McKenna and R. Messier, J. Appl. Phys. 68 (1990), p1489.
    [25] H. Reisler, MS. Mangir, C Witting, Journal of Chem. Phys., 73(1980), p2280.
    [26] D.A. Horner, L.A. Curtiss and D.M. Gruen, Chemical Physics Letters 233 (1995), p243-248.
    [27] V.I. Konov, A.A. Smolin, V.G. Ralchenko, S.M. Pimenov, et al, Diamond Rel. Mater. 4 (1995), p1073.
    [28] L.C. Nistor, J.V. Landuyt, V.G. Ralchenko, E.D. Obraztsova and A.A.Smolin, Diamond Rel. Mater. 6 (1997), p159.
    [29] A. Heiman, I. Gouzman, S.H. Christiansen, H.P. Strunk, et al, J. Appl. Phys. 89(2001), p2622.
    [30] A.Heiman, E. Lakin, E.Zolotoyabko and A. Hoffman, Diamond Rel. Mater. 11 (2002), p601.
    [31] L. Chow, D. Zhou, A. Hussain, S. Kleckley, et al, Thin Solid Films 368(2000), p193-197.
    [32] M.S. Kang, W.S. Lee and Y.J. Baik, Thin Solid Films 398-399(2001), p175.
    [33] S. Gupta, B.R. Weiner and G. Morell, Diamond Rel. Mater. 10 (2001), p1968.
    [34] M. Roy, V.C. George, A.K. Dua, P. Paj, et al, Diamond Rel. Mater. 11 (2002), p1858.
    [35] M.Y. Liao, X.M. Meng, X.T. Zhou, J.Q.Hu and Z.G. Wang, J. of Crystal Growth 236(2002), p85-89.
    [36] S. Gupta, B.R. Weiner and G. Morell, Diamond Rel. Mater. 11 (2002), p799-803.
    [37] G. Amaratunga, A. Putnis, K. Clay and W. Milne, Appl. Phys. Lett. 55(1989), p634-635.
    [38] S.S. Proffitt, S.J. Probert, M.D. Whitfield, J.S. Foord and R.B. Jackman, Diamond Rel. Mater. 8 (1999), p768.
    [39] K. Teii, H. Ito, M. Hori, T. Takeo, et al, J. Appl. Phys. 87(2000), p4572.
    [40] J.M. Lopez, F.J. Gordillo-Vazquez and J.M. Albella, Applied Surface Science 185(2002), p321-325.
    [41] J. Lee, R.W.Collins, and R. Messier, Appl. Phsy. Lett., 70 (1997), p1527.
    [42] D. Zhou, D.M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, J. Appl.
    Phys. 84(1998), p1981-1989.
    [43] T. G. McCauley, D. M. Gruen and A. R. Krauss, App. Phys. Letters 73(1998),
    p1646.
    [44] D. Zhou, T.G. McCauley, L. C. Qin, A. R. Krauss, and D.M. Grun, J.Appl.Phys.
    83 (1997), p540-543.
    [45] M. A. Khan, M.S.Haque, H. A. Naseem, W. D. Brown, and A.P. Malshe, Thin
    Solid Films 322(1998), p93.
    [46] S. Lee, S. Y. Han, and S.G. Oh, Surface and Coatings Technology 112(1999),
    p194.
    [47] L.C. Chen, and P.D. Kichambare, J. Appl. Phys. 89(2001), p753.
    [48] S.P. Hong, H. Yoshikawa, K. Wazumi, and Y. Koga, Diamond and Rel. Mater. 11 (2002), p877-881.
    [49] B.Bi,W.-S.Huang, J. Asmussen, and B. Golding, Diamond and Related Materials
    11 (2002), p677-680.
    [50] M. Hiramatsu, C. H. Lau, A.Bennett, and J.S. Foord, Thin Solid Films
    407(2002), p18.
    [51] T. Sharda, T. Soga, T. Jimbo, and M. Umeno, Diamond and Rel. Mater.9 (2000),
    p1331-1335.
    [52] T. Sharda, M. Umeno , T. Soga, and T. Jimbo, App. Phys. Letters 77(2000),
    p4304-4306.
    [53] N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani and A. Hiraki, J. of Crystal
    Growth 242(2002), p362.
    [54] K.M. Song, J.Y. Shim, H.K. Baik, Diamond and Rel. Material 11 (2002), p185.
    [55] D. Zhou, D.M. Gruen, L.C. Qin, T.G. McCauley, A.R. Krauss, Journal of Applied Physics 84 (1998) 1981.
    [56] D.M. Gruen, Annual Review of Materials Science 29 (1999) 211.
    [57] T. Lin, G.Y. Yu, A.T.S. Wee, Z.X. Shen, Applied Physics Letters 77 (12) (2000) 2692.
    [58] A.N. Jones, W. Ahmed, I.U. Hassan, C.A. Rego, H. Sein, M. Amar, M.J. Jackson, Journal of Physics. Condensed Matter 15 (2003) S2969.
    [59] A.N. Goyette, J.E. Lawler, L.W. Anderson, D.M. Gruen, T.G. McCauley, Plasma Sources Science and Technology 7 (1998) 149.
    [60] Y.K. Liu, C. Liu, Y. Chen, Y. Tzeng, P.L. Tso, I.N. Lin, Diamond and Related Materials, 13 (2004) 671.
    [61] W. Zhu, A. Inspektor, A.R. Badzian, T. McKenna, R. Messier, Journa of Applied Physics 68 (4) (1990) 1489.
    [62] G. Hertzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules, D. van Norstrand, New York, 1950, p. 30.
    [63] R. Pfeiffer, H. Kauzmany, P. Knoll, S. Bokova, N. Salk, B. Gunther, Diamond and Related Materials 12 (2003) 268.
    [64] L.C. Nistor, J.V. Landuyt, V.G. Ralchenko, E.D. Obraztsova, A.A. Smolin, Diamond and Related Materials 6 (1997) 159.
    [65] S.M. Leeds, T.J. Davis, P.W. May, C.D.O. Pickard, M.N.R. Ashfold, Diamond and Related Materials 7 (1998) 233.
    [66] M. Hiramatsu, C.H. Lau, A. Bennett, J.S. Foord, Thin Solid Films 407 (2002) 18.
    [67] Y. Tzeng. American Physical Society Meeting, Pittsburgh, PA. 1994 (March 21).
    [68] Y. Tzeng, J. Wei, Program and Abstracts of the Fourth International Conference on the New Diamond Science and Technology (ICNDST-4), Kobe, Japan, 1994 (July 18–22), pp. 63.
    [69] T.-H. Chein, J. Wei, Y. Tzeng, Diamond and Related Materials 8 (1999) 1686– 1696.
    [70] D.M. Gruen, S. Liu, A.R. Krauss, J. Luo, and X.Pan, Appl. Phys. Lett. 64, 1502 (1994).
    [71] H. Liu, and D.S. Dandy, Diamond and Related Materials 4, p1173-1188, 1995
    [72] T. Hao, and C. Shi, Diamond and Related Materials 13, p465-472, 2004
    [73] O.R. Monteiro, and H. Liu, Diamond and Related Materials 12, p1357-1361, 2003
    [74] Z.B. Ma, J.H. Wang, W.W. Zhang, and A.H. He, Surface and Coatings Technology 184, p307-310, 2004
    [75] O. Elmazria, M.E. Hakiki, V. Mortet, B. M. Assouar, M. Nesladek, M. Vanecek, P. Bergonzo, and P. Alnot, IEEE Transactions of ultronics, ferroelectrics, and frequency control, Vol. 51, No. 12, p1704-1709, 2004
    [76] D. Zhou, D.M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, J. Appl. Phys. 84(1998), p1981.
    [77] D.M. Gruen, Annu. Rev. Mater. Sci. 1999, 29, p211
    [78] T.Lin, G.Y.Yu, A.T.S.Wee, and Z.X.Shen, Applied Physics Letters Vol.77. No.12 (2000), p2692.
    [79] A.N.Jones, W.Ahmed, I.U.Hassan, C.A.Rego, H.Sein, M.Amar and M.J.Jackson, Journals of Physics: Condensed Matter 15 (2003), S2969.
    [80] C.J. Tang, A.J. Neves, and A.J.S. Fernandes, Diamond and Related Materials 12, p1488-1494, 2003
    [81] S. Yugo, T. Kanai, T. Kimura, and T. Muto, Applied Physics Letters 58, p1036-1038, 1991
    [82] C.K. Campbell, Surface acoustic wave devices for mobile and wireless communications, academic press, inc., 1998.
    [83] S. Shikata, H. Nakahata, K. Higaki, A. Hachigo, N. Fujimori, Y. Yamamoto, N. Sakairi and Y. Takahasi, IEEE Ultrasonics symposium, 1993, p277-280.
    [84] H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahasi, T. Kajihara and Y. Yamamoto, Jpn. Appl. Phys. Vol.33, 1994, p324-328.
    [85] H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, H. Kitabayashi, K. Tanabe, Y. Seki and S. Shikata, IEEE Ultrasonics symposium, 1995, p361-370.
    [86] K. Higaki, H. Nakahata, H. Kitabayashi, S. Fujii, K. Tanabe, Y. Seki and S. Shikata, IEEE MTT-S Digest, 1997, p829-832.
    [87] H. Nakahata, H. Kitabayashi, T. Uemura, A. Hachigo, K. Higaki, S. Fujii, Y. Seki, K. Yoshida and S. Shikata, Jpn. Appl. Phys. Vol.37, 1998, p2918-2922.
    [88] A. Hachigo, H. Nakahata, K. Itakura, S. Fujii, and S. Shikata, IEEE Ultrasonics symposium, 1999, p325-328.
    [89] H. Nakahata, A. Hachigo, K. Itakura, and S. Shikata, IEEE Ultrasonics symposium, 2000, p349-352.
    [90] B. Bi, W.S. Huang, J.Asmussen, and B. Golding, Diamond and Related Materials 11, 2002, p677-680
    [91] W.Lee, M.C.Jeong, and J.M. Myoung, Nanotechnology 15 (2004), p254-259
    [92] K.M. McNamara, Applied Physics Letters, Vol. 83, No. 7, p1325-1327, 2003
    [93] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L.A. Curtiss, A. N. Goyette, D.M. Gruen, A.R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, Applied Physics Letters, Vol. 79, No. 10, p1441-1443, 2001
    [94] J. Birrell, J.A. Carlisle, O. Auciello, D.M. Gruen, and J.M. Gibson, Applied Physics Letters, Vol. 81, No. 12, p2235-2237, 2002
    [95] J.E. Gerbi, O. Auciello, J. Birrell, D.M. Gruen, B.W. Alphenaar, and J.A. Carlisle, Applied Physics Letters, Vol. 83, No. 10, p2001-2003, 2003
    [96] O.A. Williams, S. Curat, J.E. Gerbi, D.M. Gruen, and R.B. Jackman, Applied Physics Letters, Vol. 85, No. 10, p1680-1682, 2004
    [97] A.V. Karabutov, V.I. Konov, V.G. Pereverzev, I.I. Vlasov, E.V. Zavedeev, S.M. Pimenov, and E.N. Loubnin, J. Vac. Sci. Technol. B 22(3), p1319-1325, 2004
    [98] T.D. Corrigan, D.M. Gruen, A.R. Krauss, P. Zapol, and R.P.H. Chang, Diamond and Related Materials 11, p43-48, 2002
    [99] A.V. Karabutov, V.D. Frolov, and V.I. Konov, Diamond and Related Materials 10, p840-846, 2001
    [100] J.Birrell, J.E. Gerbi, O. Auciello, J.M. Gibson, D.M. Gruen, and J.A. Carlisle, Journal of Applied Physics, Vol. 93, No. 9, p5606-5612, 2003
    [101] Y. Liu, C. Liu, Y. Chen, Y. Tzeng, P. Tso, and I. Lin, Diamond and Related Materials 13, p671-678, 2004
    [102] W. Zhu, A. Inspektor, A.R. Badzian, T. McKenna, and R. Messier, Journal of Applied Physics 68(4), p1489, 1990
    [103] G. Hertzberg, “Molecular Spectra and Molecular Structure I, Spectra of Diatomic Molecules”, D. van Norstrand, New York, 1950
    [104] R. Pfeiffer, H. Kauzmany, P. Knoll, S. Bokova, N. Salk, and B. Gunther, diamond and Related Material 12, p268-271, 2003
    [105] J.R. Rabeau, P. John, and J.I.B. Wilson, and Y. Fan, Journal of Applied Physics, Vol. 96, No. 11, 2004
    [106] S.M. Huang, Z. Sun, Y.F. Lu, and M.H. Hong, Surface and Coatings Technology 151-152, p263-267, 2002
    [107] P. Zapol, M. Sternberg, L.A. Curtiss, T. Frauenhein, and D.M. Gruen, Physics Review B, Vol. 65, No. 4, 045403, 2002
    [108] J.X. Yang, H.D. Zhang, C.M. Li, G.C. Chen, F.X. Lu, W.Z. Tang, and Y.M. Tong, Diamond and Related Materials 13, p139-144, 2004
    [109] V.M. Ayres, M. Farhan, D. Spach, J. Bobbitt, J. A. Majeed, B.F. Wright, B.L. Wright, J. Asmussen, M.G. Kanatzidis, and T.R. Bieler, Journal of Applied Physics, Vol. 89, No. 11, p 6062-6068, 2001
    [110] K.H. Park, S. Lee, K.H. Song, et al., J. Vac. Sci. Technol. B16 (1998) 724–728.
    [111] W.P. Kang, A. Wisitsora-at, J.L. Davidson, et al., J. Vac. Sci. Technol. B16 (1998) 684–688.
    [112] Y. Tzeng, M. Yoshikawa, M. Murakawa, and A. Feldman (Editors), Applications of Diamond Films and Related Materials, (876 pages) Elsevier Science Publishers B.V., The Netherlands, August 12, 1991.
    [113] M. Yoshikawa, M. Murakawa, Y. Tzeng, and W. Yarbrough (Editors), Proceedings of the 2nd International Conference on the Applications of Diamond Films and Related Materials, (857 pages), Scientific Publishing Division of MYU, Tokyo, Japan, August 23, 1993.
    [114] A. Feldman, Y. Tzeng, W.A. Yarbrough, M. Yoshikawa, and M. Murakawa (Editors), Applications of Diamond Films and Related Materials: Third International Conference (951 pages) National Institute of Standards and Technology Special Publication 885, Gaithersburg, MD, August 21-24, 1995.
    [115] M. Yoshikawa, Y. Koga, Y. Tzeng, C.-P. Klages, and K. Miyoshi (Editors), Proceedings of the 5th Applied Diamond Conference/ 1st Frontier Carbon Technology Joint Conference 1999 , MYU, K.K., Tsukuba, Japan, August 31 - September 4, 1999.
    [116] Y. Tzeng, K. Miyoshi, M. Yoshikawa, M. Murakawa, Y. Koga, K. Kobashi, and G.A.J. Amaratunga (Editors), Proceedings of the 6th Applied Diamond Conference/ 2nd Frontier Carbon Technology Joint Conference 2001, (865 pages) NASA CP-2001-210948, ISBN 0-9710327-0-X, Auburn University, Alabama, USA, August 6-10, 2001.
    [117] M. Murakawa, K. Miyoshi, Y. Koga, L. Schafer, and Y. Tzeng (Editors), Proceedings of the 7th Applied Diamond Conference/ 3rd Frontier Carbon Technology Joint Conference 2003, (635 pages) NASA CP-2003-212319, ISBN 0-9710327-1-8, Tsukuba, Japan, August 18-21, 2003.
    [118] Orlando Auciello, James Birrell, John A. Carlisle, Jennifer E. Gerbi, Xingcheng Xiao, Bei Peng, and Horacio D. Espinosa, J. Phys.: Condens. Matter 16 R539-R552, 2004.
    [119] Tahir Cagın, Jianwei Che, Michael N Gardos, Amir Fijany and William A Goddard III, Nanotechnology 10 (1999) 278–284.
    [120] J.E. Butler, D.S.Y. Hsu, B.H. Houston, X. Liu, J. Vignola, T. Feygelson, L. Sekaric, H. Craighead, J. Wang, and C.T.-C. Nyguen, the 8th International Conference on New Diamond Science and Technology, July 21-26, 2002, Melbourne, Australia. Online: Available at http://www.conferences.unimelb.edu.au/icndst-8/Presentations/6-2.pdf.
    [121] Yoshiki Nishibayashi, Yutaka Ando, Hiroshi Furuta, Natsuo Tatsumi, Akihiko Namba, and Takahiro Imai, SEI Technical Review, No. 57. P.31, January 2004.
    [122] W. Zhu, F.R. Sivazlian, B.R. Stoner, and J.T. Glass, J. Mater. Res., Vol.10, No.2, p.425, 1996.
    [123] W. P. Kang, J. L. Davidson, and D. V. Kerns Jr., US patent #6132278, October 17/2000.
    [124] S.D. Wolter, F. Okuzumi, K.M. Lee, N. Govindaraju, and Z. Sitar, Applied Diamond Conference 2001, Auburn University, Auburn, Alabama USA, available online at: http://www.eng.auburn.edu/department/ee/ADC-FCT2001/ADCFCTabstract/035.htm
    [125] See, for example, information posted online at
    http://tousimis.com/critical_point_dryers/MEMS_drying_system.html
    [126] A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Manzini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M. O. Ding, Diamond and Related Materials 10 (2001) 1952-1961.
    [127] F. J. Hernández Guillén *, K. Janischowsky, W. Ebert, E. Kohn, Physica Status Solidi (a) Vol.201, Issue 11, pp. 2553-2557, 2004.
    [128] S. Ertl, M. Adamschik, P. Schmid, P. Gluche, A. Floter and E. Kohn, Diamond and Related Materials, Vol. 9, Issues 3-6, 2000, pp.970-974.
    [129] P. Schmid, M. Adamschik and E. Kohn, 2003 Semicond. Sci. Technol. 18 S72-S76.
    [130] E. Kohn, W. Menzel, F.J. Hernandez-Guillen, R. Muller, A. Munding, P. Schmid, D. Grobe, J. Kusterer, IEEE MTT-S International Microwave Symposium Digest, v 3, 2003, p 1625-1628.
    [131] M. Adamschik, J. Kusterer, P. Schmid, K.B. Schad, D. Grobe, A. Floter, E. Kohn, Diamond and Related Materials, v 11, n 3-6, March/June, 2002, p 672-676.
    [132] S.S. Iqbal, M.W. Mayo, J.G. Bruno, B.V. Bronk, C.A. Batt, J.P. Chambers, Biosens.Bioelectr on. 15 (2000) 549.
    [133] T.S. Huang, Y. Tzeng, Y.K. Liu, Y.C. Chen, K.R. Walker, R. Guntupalli, and C.Liu, Diamond and Related Materials 13 (2004), p1098-1102.
    [134] T.S. Huang, M.R. Marshall, K.J. Kao, W.S. Otwell, C.I. Wei, J.Agric. Food Chem. 43 (1995) 2301.
    [135] L.A. Cantarero, J.E. Butler, J.W. Osborne, Anal.Biochem. 105 (1980) 375.
    [136] M.Nisnevitch, M.A. Firer, J.Biochem. Biophys.Method 49 (2001) 467.
    [137] L. Sekaric, and J.E. Bulter, etc., Appl. Phys. Lett. Vol. 81, No.23, (2002), p4455

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE