簡易檢索 / 詳目顯示

研究生: 廖建偉
Liao, JianWei
論文名稱: 利用超音波噴塗法開發擴散製程應用於製備矽基太陽能電池N+型與P+型摻雜區之研究
Development of Diffusion Process for Fabrication of N+ and P+ Doped Region in Silicon-Based Solar Cell with Ultrasonic Spray Technique
指導教授: 陳福榮
Chen, Fu Rong
口試委員: 林澤勝
Lin, Tze Sheng
孫文檠
Sun, Wen Ching
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 93
中文關鍵詞: 太陽能電池
外文關鍵詞: Solar Cell
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • n+型摻雜區的製作,在工業製程上最常使用三氯氧磷(POCl3)在高溫爐管中進行擴散,但是POCl3本身便有劇毒與強烈臭味,在操作上不僅對人有危險,甚至對環境也有害。而p+型摻雜區的製作,主要是使用三溴化硼(BBr3)進行高溫摻雜,然而BBr3不但在使用過程中會產生有毒的Br2,且容易和水或是空氣中的水氣反應形成有毒且具腐蝕性的溴化氫(HBr),故找到新的n+型摻雜區與p+型摻雜區的製備方法是勢在必行。
    本研究是以超音波震盪噴塗法,預先在矽基板上噴塗磷酸與硼酸霧滴當作n+型與p+型摻雜源,並以最佳擴散溫度950℃與擴散時間30分鐘進行磷擴散摻雜,即可獲得最佳的磷原子n+型摻雜區。另外預先於矽基板上以噴塗600秒的硼酸霧滴,再以相同的擴散溫度、時間進行硼擴散摻雜,亦可獲得最佳的硼原子p+型摻雜區。此外,本研究以Boltzmann-Matano法分析得知磷原子與硼原子在矽基板中的擴散機制,得出磷擴散從高濃度到低濃度區分別由空位擴散、self-interstitial的矽原子以及interstitial的磷原子擴散主導;而硼擴散主要由高濃度的空位擴散與低濃度時self-interstitial的矽原子的擴散主導。
    最後,本研究確認以超音波震盪噴塗磷酸與硼酸霧滴加上一次共擴散即可完成太陽能電池的n+型與p+型摻雜區的製備,並做出最高轉換效率15.57%的單面矽晶太陽能電池,與最高轉換效率7.86%的雙面太陽能電池。


    In industrial process, n+ doped region of solar cell often be fabricated by POCl3 diffusion. However, POCl3 is toxic and harmful to the environment. As for p+ doped region, it often be made with BBr3, but BBr3 is toxic and easy to form HBr when it was used.
    In this research, n+ doped and p+ doped region was fabricated by spraying of dilute phosphoric acid and boric acid as doping source. After comparing the doping profile and sheet resistance, phosphorus diffused at 950℃/30min will get proper n+ doped region. Besides, spraying dilute boric acid 600s before diffusing at the same temperature and time will also have the proper doping result of p+ doped region.
    Furthermore, by using the Boltzmann-Matano method to analyze the diffusion mechanism of phosphorus and boron. The results shows that phosphorus diffusion was dominated by vacancy、self-interstitial silicon atoms and interstitial phosphorus atoms at different concentration regions. As for boron diffusion mechanism, it was dominated by vacancy and self-interstitial silicon atoms when boron atoms diffused.
    At last, by using spraying technique and co-diffusion to fabricate n+ and p+ doped region of solar cells. After measurement, monocrystalline solar cell can get the efficiency 15.57% and bifacial solar cell can get the efficiency 7.86% in respective.

    誌謝 i 摘要 iii Abstract iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1-1前言 1 1-2研究動機 3 第二章 基礎理論介紹 4 2-1超音波震盪噴塗法原理 4 2-2磷擴散n+型摻雜機制 6 2-3硼擴散p+型摻雜機制 9 2-4太陽能電池基本原理 11 第三章 實驗方法與步驟 14 3-1實驗設備 14 3-2實驗步驟 16 3-2-1超音波噴塗法製備n+型摻雜源 18 3-2-2覆蓋層製備 18 3-2-3超音波噴塗法製備p+型摻雜源 20 3-3量測儀器 20 3-3-1四點探針 21 3-3-2少數載子生命週期量測儀 22 3-3-3太陽光模擬器 23 3-3-4二次離子質譜儀 23 3-3-5高解析X光光電子能譜儀(HR-XPS) 25 3-3-6光學顯微鏡(OM) 26 3-3-7場發射掃描式電子顯微鏡(FE-SEM) 26 3-3-8場發射穿透式電子顯微鏡(FE-TEM) 27 3-3-9紫外光/可見光分光光譜儀(UV/VIS) 27 第四章 實驗結果與討論 29 4-1磷原子n+型摻雜 29 4-1-1磷原子摻雜後縱深曲線 30 4-1-2磷原子摻雜後片電阻 33 4-1-3磷原子摻雜後少數載子生命週期 36 4-1-4縱深分布曲線推算磷原子擴散機制 38 4-2覆蓋層應用於n+型摻雜區製程 42 4-2-1覆蓋層膠體分析 43 4-2-2超音波噴霧熱裂解法製備覆蓋層 48 4-2-3超音波噴霧熱裂解法鍍上覆蓋層後的磷原子摻入量 56 4-3 p+型摻雜區製作 57 4-3-1硼原子p+型摻雜 57 4-3-2縱深分布曲線推算硼原子擴散機制 60 4-4太陽能電池製作 63 4-4-1抗反射層製作 67 4-4-2鈍化層製作 70 4-4-3網印金屬電極膠體 75 4-4-4共燒結形成金屬電極 77 4-4-5電流-電壓曲線(I-V Curve)測量 80 第五章 結論 86 參考文獻 88

    [1]C. Duran et al., “Approaches to an improved IV and QE characterization of bifacial silicon solar cells and the prediction of their module performance”. Presented at the 1st International Conference on Crystalline Silicon Photovoltaics, 2011 Freiburg.

    [2]http://www.nrel.gov/technologytransfer/pdfs/igf20_gamma.pdf

    [3]D.S. Kim et al., “Development of a phosphorus spray diffusion system for low-cost silicon solar cells”, J. Electrochem, Soc. 153(7), 2006, A1391-A1396.

    [4]http://en.wikipedia.org/wiki/Cavitation

    [5]Franc, Jean-Pierre, “Fundamentals of Cavitation.” Dordrect, The Netherlands: Kluwer Academic Publishers,(2004).

    [6]A. Nakaruk, C. C. Sorrell, “Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titanium thin films”, J. Coat. Technol. Res., 7 (5)
    665–676, 2010

    [7]DAINIUS PEREDNIS & LUDWIG J. GAUCKLER, “Thin Film Deposition Using Spray Pyrolysis”, Journal of Electroceramics, 14, 103–111, 2005

    [8]A. Bentzen, A. Holt, J. S. Christensen and B. G. Svensson, "High concentration in-diffusion of phosphorus in Si from a spray-on source", Journal of Applied Physics
    99, 064502, 2006.

    [9]M. Yoshida, “Excess Vacancy Generation by E-Center Dissociation in the Case of Phosphorus Diffusion in Silicon,” J. Appl. Phys., vol. 48, no. 6, 2169-2174 (1977)

    [10]S. Mirabella, D. De Salvador, E. Napolitani, E. Bruno, and F. Priolo, “Mechanisms of boron diffusion in silicon and germanium,” J. Appl. Phys., vol.113, no. 3, pp. 031101-1–031101-21, Jan. 2013.

    [11]D.K. & Meier D.L. “Solar cell contact resistance – a review”, IEEE Transactions on Electron Devices, Vol. 31, pp. 637-647. ISSN 0018-9383. (1984)

    [12]B. Min, H. Wagner, A. Dastgheib‐Shirazi, A. Kimmerle, H. Kurz, P. P. Altermatt, “Heavily doped Si: P emitters of crystalline Si solar cells: recombination due to phosphorus precipitation”, Physic Status Solidi (RRL), 1-5 (2014)

    [13]Shen, L., et al. “Optimization of oxidation processes to improve crystalline silicon solar cell emitters.” AIP Advances 4.2 (2014): 027127.

    [14]A. Fallisch, D. Wagenmann, R. Keding, D. Trogus, M. Hofmann, J. Rentsch, H. Reinecke, and D. Biro, “Analysis of phosphorus-doped silicon oxide layers deposited by means of PECVD as a dopant source in diffusion processes,” IEEE J. Photovoltaics, vol. 2, no. 4, pp. 450–456, 2012

    [15]S. Solmi, A. Parisini, R. Angelucci, A. Armigliato, “Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates”, Physical Review B 53 (1996) 7836–7841

    [16]F. Book et al. “Detailed Analysis of High Sheet Resistance Emitters for Selectively Doped Silicon Solar Cells”, Proc. 24th EU PVSEC, Hamburg, 2009,1719

    [17]A. Bentzen et al., “Influence of temperature during phosphorus emitter diffusion from a spray-on source in multicrystalline silicon solar cell processing”, Progress
    in Photovoltaics, Res. Appl. (15) 2007, 281–28917

    [18]C. Voyer et al. “Mechanisms involved in the formation of phosphorsilicate glass by dehydration of sprayed phosphoric acid in an in-line diffusion furnace”, 22nd
    EU PVSEC, Milan 2007

    [19]陳奕帆,「Compositional Effect of Precursor Solution on Formation of Aluminum Oxide Passivation Layer Using Ultrasonic Spray Pyrolysis Method;前驅溶液成分對於以超音波霧化熱裂解法製備氧化鋁薄膜之影響」,國立清華大學工程與系統科學所,碩士論文,中華民國一百年

    [20]Kirt R. Williams, “Etching Rate for Micromachining Processing-PartⅡ,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 6, DECEMBER 2003

    [21]Vick GL, Whittle KM, “Solid solubility and diffusion coefficients of boron in silicon”, J Electrochemical Society 1969;116:1142-4

    [22]Suhaila Sepeai, Saleem H.Zaidi, M.K.M.Desa, M.Y.Sulaiman, N.A.Ludin,M.Adib Ibrahim, K.Sopian, “Design Optimization of Bifacial Solar Cell by PC1D Simulation”, Journal of Energy Technologies and Policy, Vol.3, No.5,
    2013

    [23]C. Kim, et al., “Boltzmann–Matano analysis of boron profiles in silicon”, J. Electrochem. Soc. 131 (1985) 2962–2964.

    [24]Duran C, Buck T, Kopecek R, Libal J, Traverso F, “Bifacial solar cells with
    boron back surface field”, Proc. 25th EU PVSEC Valencia 2010, 2348-2352

    [25]P. Lolgen et al., “Boron Doping of Silicon Using Co-alloying with Aluminum”,Appl. Phys. Lett. 65, 1994, pp. 2792-2794.

    [26]D. R. Baer, M. H. Engelhard, A. S. Lea et al., “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, vol. 28, no. 5, pp. 1060–1072,2010

    [27]Hoex B, Heil S, Langereis E, van de Sanden MCM, Kessels WMM. “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic
    layer deposited Al2O3”. Applied Physics Letters 2006; 89:042112.

    [28]Hoex B, Gielis JJH, van de Sanden MCM, Kessels WMM, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3”. J Appl Phys.2008;8(11):113703. doi: 10.1063/1.3021091.

    [29]Ching-Hsi Lin, Shih-Peng Hsu, Wei-Chih Hsu, “Silicon Solar Cells: Structural Properties of Ag-Contacts/Si Substrate”, Industrial Technology Research Institute ,Taiwan, R.O.C. (2011).

    [30]P.J. Richter, F.J. Bottari, D.C. Wong, “Rapid Metallization Paste Firing of Crystalline Silicon Solar Cells”, Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE

    [31]Huster F, “Investigation of the alloying process of screen-printed aluminum pastes for the BSF formation on silicon solar cells” Proc. 20th EU PVSEC, Barcelona, Spain, 2005; pp. 1466-1469

    [32]Sepeai, S., et al., “Surface passivation studies on n+pp+ bifacial solar cell”.
    International Journal of Photoenergy, 2012

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE