研究生: |
廖建偉 Liao, JianWei |
---|---|
論文名稱: |
利用超音波噴塗法開發擴散製程應用於製備矽基太陽能電池N+型與P+型摻雜區之研究 Development of Diffusion Process for Fabrication of N+ and P+ Doped Region in Silicon-Based Solar Cell with Ultrasonic Spray Technique |
指導教授: |
陳福榮
Chen, Fu Rong |
口試委員: |
林澤勝
Lin, Tze Sheng 孫文檠 Sun, Wen Ching |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 太陽能電池 |
外文關鍵詞: | Solar Cell |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
n+型摻雜區的製作,在工業製程上最常使用三氯氧磷(POCl3)在高溫爐管中進行擴散,但是POCl3本身便有劇毒與強烈臭味,在操作上不僅對人有危險,甚至對環境也有害。而p+型摻雜區的製作,主要是使用三溴化硼(BBr3)進行高溫摻雜,然而BBr3不但在使用過程中會產生有毒的Br2,且容易和水或是空氣中的水氣反應形成有毒且具腐蝕性的溴化氫(HBr),故找到新的n+型摻雜區與p+型摻雜區的製備方法是勢在必行。
本研究是以超音波震盪噴塗法,預先在矽基板上噴塗磷酸與硼酸霧滴當作n+型與p+型摻雜源,並以最佳擴散溫度950℃與擴散時間30分鐘進行磷擴散摻雜,即可獲得最佳的磷原子n+型摻雜區。另外預先於矽基板上以噴塗600秒的硼酸霧滴,再以相同的擴散溫度、時間進行硼擴散摻雜,亦可獲得最佳的硼原子p+型摻雜區。此外,本研究以Boltzmann-Matano法分析得知磷原子與硼原子在矽基板中的擴散機制,得出磷擴散從高濃度到低濃度區分別由空位擴散、self-interstitial的矽原子以及interstitial的磷原子擴散主導;而硼擴散主要由高濃度的空位擴散與低濃度時self-interstitial的矽原子的擴散主導。
最後,本研究確認以超音波震盪噴塗磷酸與硼酸霧滴加上一次共擴散即可完成太陽能電池的n+型與p+型摻雜區的製備,並做出最高轉換效率15.57%的單面矽晶太陽能電池,與最高轉換效率7.86%的雙面太陽能電池。
In industrial process, n+ doped region of solar cell often be fabricated by POCl3 diffusion. However, POCl3 is toxic and harmful to the environment. As for p+ doped region, it often be made with BBr3, but BBr3 is toxic and easy to form HBr when it was used.
In this research, n+ doped and p+ doped region was fabricated by spraying of dilute phosphoric acid and boric acid as doping source. After comparing the doping profile and sheet resistance, phosphorus diffused at 950℃/30min will get proper n+ doped region. Besides, spraying dilute boric acid 600s before diffusing at the same temperature and time will also have the proper doping result of p+ doped region.
Furthermore, by using the Boltzmann-Matano method to analyze the diffusion mechanism of phosphorus and boron. The results shows that phosphorus diffusion was dominated by vacancy、self-interstitial silicon atoms and interstitial phosphorus atoms at different concentration regions. As for boron diffusion mechanism, it was dominated by vacancy and self-interstitial silicon atoms when boron atoms diffused.
At last, by using spraying technique and co-diffusion to fabricate n+ and p+ doped region of solar cells. After measurement, monocrystalline solar cell can get the efficiency 15.57% and bifacial solar cell can get the efficiency 7.86% in respective.
[1]C. Duran et al., “Approaches to an improved IV and QE characterization of bifacial silicon solar cells and the prediction of their module performance”. Presented at the 1st International Conference on Crystalline Silicon Photovoltaics, 2011 Freiburg.
[2]http://www.nrel.gov/technologytransfer/pdfs/igf20_gamma.pdf
[3]D.S. Kim et al., “Development of a phosphorus spray diffusion system for low-cost silicon solar cells”, J. Electrochem, Soc. 153(7), 2006, A1391-A1396.
[4]http://en.wikipedia.org/wiki/Cavitation
[5]Franc, Jean-Pierre, “Fundamentals of Cavitation.” Dordrect, The Netherlands: Kluwer Academic Publishers,(2004).
[6]A. Nakaruk, C. C. Sorrell, “Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titanium thin films”, J. Coat. Technol. Res., 7 (5)
665–676, 2010
[7]DAINIUS PEREDNIS & LUDWIG J. GAUCKLER, “Thin Film Deposition Using Spray Pyrolysis”, Journal of Electroceramics, 14, 103–111, 2005
[8]A. Bentzen, A. Holt, J. S. Christensen and B. G. Svensson, "High concentration in-diffusion of phosphorus in Si from a spray-on source", Journal of Applied Physics
99, 064502, 2006.
[9]M. Yoshida, “Excess Vacancy Generation by E-Center Dissociation in the Case of Phosphorus Diffusion in Silicon,” J. Appl. Phys., vol. 48, no. 6, 2169-2174 (1977)
[10]S. Mirabella, D. De Salvador, E. Napolitani, E. Bruno, and F. Priolo, “Mechanisms of boron diffusion in silicon and germanium,” J. Appl. Phys., vol.113, no. 3, pp. 031101-1–031101-21, Jan. 2013.
[11]D.K. & Meier D.L. “Solar cell contact resistance – a review”, IEEE Transactions on Electron Devices, Vol. 31, pp. 637-647. ISSN 0018-9383. (1984)
[12]B. Min, H. Wagner, A. Dastgheib‐Shirazi, A. Kimmerle, H. Kurz, P. P. Altermatt, “Heavily doped Si: P emitters of crystalline Si solar cells: recombination due to phosphorus precipitation”, Physic Status Solidi (RRL), 1-5 (2014)
[13]Shen, L., et al. “Optimization of oxidation processes to improve crystalline silicon solar cell emitters.” AIP Advances 4.2 (2014): 027127.
[14]A. Fallisch, D. Wagenmann, R. Keding, D. Trogus, M. Hofmann, J. Rentsch, H. Reinecke, and D. Biro, “Analysis of phosphorus-doped silicon oxide layers deposited by means of PECVD as a dopant source in diffusion processes,” IEEE J. Photovoltaics, vol. 2, no. 4, pp. 450–456, 2012
[15]S. Solmi, A. Parisini, R. Angelucci, A. Armigliato, “Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates”, Physical Review B 53 (1996) 7836–7841
[16]F. Book et al. “Detailed Analysis of High Sheet Resistance Emitters for Selectively Doped Silicon Solar Cells”, Proc. 24th EU PVSEC, Hamburg, 2009,1719
[17]A. Bentzen et al., “Influence of temperature during phosphorus emitter diffusion from a spray-on source in multicrystalline silicon solar cell processing”, Progress
in Photovoltaics, Res. Appl. (15) 2007, 281–28917
[18]C. Voyer et al. “Mechanisms involved in the formation of phosphorsilicate glass by dehydration of sprayed phosphoric acid in an in-line diffusion furnace”, 22nd
EU PVSEC, Milan 2007
[19]陳奕帆,「Compositional Effect of Precursor Solution on Formation of Aluminum Oxide Passivation Layer Using Ultrasonic Spray Pyrolysis Method;前驅溶液成分對於以超音波霧化熱裂解法製備氧化鋁薄膜之影響」,國立清華大學工程與系統科學所,碩士論文,中華民國一百年
[20]Kirt R. Williams, “Etching Rate for Micromachining Processing-PartⅡ,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 6, DECEMBER 2003
[21]Vick GL, Whittle KM, “Solid solubility and diffusion coefficients of boron in silicon”, J Electrochemical Society 1969;116:1142-4
[22]Suhaila Sepeai, Saleem H.Zaidi, M.K.M.Desa, M.Y.Sulaiman, N.A.Ludin,M.Adib Ibrahim, K.Sopian, “Design Optimization of Bifacial Solar Cell by PC1D Simulation”, Journal of Energy Technologies and Policy, Vol.3, No.5,
2013
[23]C. Kim, et al., “Boltzmann–Matano analysis of boron profiles in silicon”, J. Electrochem. Soc. 131 (1985) 2962–2964.
[24]Duran C, Buck T, Kopecek R, Libal J, Traverso F, “Bifacial solar cells with
boron back surface field”, Proc. 25th EU PVSEC Valencia 2010, 2348-2352
[25]P. Lolgen et al., “Boron Doping of Silicon Using Co-alloying with Aluminum”,Appl. Phys. Lett. 65, 1994, pp. 2792-2794.
[26]D. R. Baer, M. H. Engelhard, A. S. Lea et al., “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, vol. 28, no. 5, pp. 1060–1072,2010
[27]Hoex B, Heil S, Langereis E, van de Sanden MCM, Kessels WMM. “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic
layer deposited Al2O3”. Applied Physics Letters 2006; 89:042112.
[28]Hoex B, Gielis JJH, van de Sanden MCM, Kessels WMM, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3”. J Appl Phys.2008;8(11):113703. doi: 10.1063/1.3021091.
[29]Ching-Hsi Lin, Shih-Peng Hsu, Wei-Chih Hsu, “Silicon Solar Cells: Structural Properties of Ag-Contacts/Si Substrate”, Industrial Technology Research Institute ,Taiwan, R.O.C. (2011).
[30]P.J. Richter, F.J. Bottari, D.C. Wong, “Rapid Metallization Paste Firing of Crystalline Silicon Solar Cells”, Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE
[31]Huster F, “Investigation of the alloying process of screen-printed aluminum pastes for the BSF formation on silicon solar cells” Proc. 20th EU PVSEC, Barcelona, Spain, 2005; pp. 1466-1469
[32]Sepeai, S., et al., “Surface passivation studies on n+pp+ bifacial solar cell”.
International Journal of Photoenergy, 2012