簡易檢索 / 詳目顯示

研究生: 程弼鴻
Chen, Bi-Hong
論文名稱: 未摻雜氮化鎵金氧半場效電晶體表面處理之探討
Study on Surface Treatment of U-GaN MOSFETs
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 吳添立
Wu, Tian-Li
趙得勝
Chao, Te-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 55
中文關鍵詞: 氮化鎵表面處理
外文關鍵詞: GaN, Surface Treatment
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要為研製水平式閘極氮化鎵金氧半場效電晶體於藍寶石基板上並採用不同表面處理方式,分別為:(a) RCA Clean(b) ICP乾式蝕刻(c)在350°C環境下進行4次的Digital etch等方式互相搭配,期望透過不同表面處理的方式,降低表面粗糙度,並進一步提升各項電性,讓元件有更好的運作。

    由量測結果可得,以RCA進行表面處理之試片擁有最佳的電性,其閾值電壓為8.75 V,最大汲極電流密度為1.915 mA/mm,計算後得到其場效遷移率為0.801 cm2/V-s。

    而經過乾蝕刻的電性表現普遍低於未經乾蝕刻的sample,而經由比較也可發現,Digital etch處理過的表面普遍較乾蝕刻處理來得平滑。


    In this study, GaN planar gate MOSFETs were fabricated on sapphire substrates. In order to recover the surface quality, several methods of surface treatment were carried out and compared, namely: (a) RCA clean (b) ICP dry-etching (c) 4 cycles of digital etch at 350 °C.
    From the measurement, it was found that the best device performance was achieved with RCA clean. With a threshold voltage of 8.75 V and a maximum drain current density of 1.915 mA/mm, the calculated field-effect mobility is 0.801 cm2/V-s.
    The electrical performance of the dry etched surface is generally worse than that of the sample without dry etching. However, it is observed by comparison with digital etched sample that the roughness of the surface is slightly higher than that of the dry etched ones.

    摘要 I Abstract II 目錄 V 第一章 序論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機與論文架構 11 第二章 元件與實驗基本介紹 12 2.1 試片磊晶結構 12 2.2 離子佈植技術(Ion implantation) 14 2.3 表面處理 16 2.4 元件設計 19 第三章 元件製作流程 22 3.1 水平式閘極金氧半場效電晶體製作流程 22 3.2 試片清潔 23 3.3 對準記號蝕刻(Mask 1) 23 3.4 源極與汲極離子佈植(Mask 2) 24 3.5 元件隔離區離子佈植(Mask 3) 25 3.6 表面處理與閘極氧化層沉積 26 3.7 源極與汲極歐姆接觸製作(Mask 4) 28 3.8 閘極與襯墊金屬沉積(Mask 5) 29 第四章 元件量測分析與結果探討 30 4.1 Digital etch實驗分析 30 4.2 歐姆接觸量測 35 4.3 閘極氧化層耐壓量測 37 4.4 元件正向電性量測分析 40 4.5 變溫電性量測分析 47 第五章 總結與未來展望 51 參考文獻 52

    [1]M. N. Yoder, “Wide band gap semiconductor materials and devices,” IEEE Transactions on Electron Devices, vol. 43, no. 10, October 1996, pp. 1633-1636
    [2]N. Kaminski, “State of the art and the future of wide band gap devices,” IEEE Power Electronics and Applications, 13th European Conference, October 2009
    [3]J. Millan, P. Godignon and X. Perpiñà, “A survey of wide band gap power semiconductor devices,” IEEE Transactions on Power Electronics, vol. 29, no. 5, May 2014, pp. 2155-2163
    [4]S. Dimitrijev, J. Han, D. Haasmann and H. Amini, “Power-switching applications beyond silicon: Status and future prospects of SiC and GaN devices,” IEEE Microelectronics Proceedings, 29th International Conference, June 2014, pp. 43-47
    [5]A. Onen, D. Kecik, E. Durgen and S. Ciraci, ” GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids,” Physical Review B, vol. 93, no. 8, 2016, p. 085431
    [6]Y. Umeno, A. Kubo, S. Nagao, ”Density functional theory calculation of ideal strength of SiC and GaN: effect of multi axial stress,” Computational Materials Science, vol. 109, 2015, pp. 105-110
    [7]W. Huang, “High-Voltage Lateral MOS-Gated FETs in Gallium Nitride,” Rensselaer Polytechnic Institute, Troy, New York. April 2008
    [8]K. Matocha, T. P. Chow and R. J. Gutmann, ”High-Voltage Accumulation Mode Lateral RESURF GaN MOSFETs on SiC Substrate,” ISPSD April 14-17 , 2003, pp. 54-57
    [9]K. Matocha, T. P. Chow and R. J. Gutmann, “High-voltage normally off GaN MOSFETs on sapphire substrates,” IEEE Transactions on Electron Devices, vol. 52, no. 1, January 2005, pp. 6-10
    [10]W. Huang, T. Khan and T. P. Chow, “Enhancement-mode n-channel GaN MOSFETs on P and N-GaN/sapphire substrates,” IEEE Electron Device Letters, vol. 27, no. 10, October 2006, pp. 796-798
    [11]T. Nomura, H. Kambayashi, Y. Niiyama, S. Otomo and S. Yoshida, “High-temperature enhancement mode operation of n-channel GaN MOSFETs on sapphire substrates,” Solid-State Electronics, vol. 52, no. 1, 2008, pp. 150–155
    [12]H. Kambayashi, Y. Niiyama, S. Otomo, T. Nomura, M. Iwami, Y. Satoh, S. Kato and S. Yoshida, “Normally Off n-Channel GaN MOSFETs on Si Substrates Using an SAG Technique and Ion Implantation,” IEEE Electron Device Letters, vol. 28, no. 12, December 2007, pp. 1077-1079
    [13]K. Yamaji, M. Noborio, J. Suda and T. Kimoto, “Improvement of Channel Mobility in Inversion-Type n-Channel GaN Metal–Oxide–Semiconductor Field-Effect Transistor by High-Temperature Annealing,” Japanese Journal of Applied Physics, vol. 47, no. 10, 2008, pp. 7784–7787
    [14]J. C. Zolper, R. J. Shul and A. G. Baca, R. G. Wilson, S. J. Pearton, R. A. Stall, ”Ion-implanted GaN junction field effect transistor,” Applied Physics Letters, vol. 68, no. 16, 1996, pp. 2273-2275
    [15]H. Cho, K. P. Lee, B. P. Gila, C. R. Abernathy, S. J. Pearton, F. Ren, “Gate breakdown characteristics of MgO/GaN MOSFETs,” Solid-State Electronics, vol. 47, 2003, pp. 1597–1600
    [16]Y. Q. Wu, P. D. Ye, G. D. Wilk and B. Yang, “GaN metal-oxide-semiconductor field-effect-transistor with atomic layer deposited Al2O3 as gate dielectric,” Materials Science and Engineering B, vol. 135, no. 3, December 2006, pp. 282-284
    [17]Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong and C. C. Tsai, “Inversion channel GaN metal-oxide-semiconductor field-effect transistor with atomic-layer-deposited Al2O3 as gate dielectric,” Applied Physics Letters, vol. 93, no. 5, August 2008, p. 053504
    [18]W. B. Lanford, T. Tanaka, Y. Otoki and I. Adesida, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” IEEE Electronics Letters, vol. 41, no. 7, March 2005, pp. 449-450
    [19]M. Tahhan, J. Nedy, S. H. Chan, C. Lund, H. Li, G. Gupta, S. Keller, and U. Mishra, “Optimization of a chlorine-based deep vertical etch of GaN demonstrating low damage and low roughness,” Journal of Vacuum Science & Technology A, vol. 34, no. 3 March 2016, p. 031303
    [20]D. Buttari, S. Heikman, S. Keller and U. K. Mishra, “Digital etching for highly reproducible low damage gate recessing on AlGaN/GaN HEMTs,” IEEE Lester Eastman Conference on High Performance Devices, August 2002, pp. 461-469
    [21]Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen and B. Shen, “High-performance normally-off Al2O3/GaN MOSFET using a wet etching-based gate recess technique,” IEEE Electron Device Letters, vol. 34, no. 11, September 2013, pp. 1370-1372
    [22]G. C. DeSalvo, C. A. Bozada, J. L. Ebel, D. C. Look and J. P. Barrette, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc., vol. 143, no. 11, April 1996, pp. 3652-3656
    [23] X. Cao and I. Thayne, “Novel high uniformity highly reproducible nonselective wet digital gate recess etch process for InP HEMTs,” Microelectronic Engineering, vol. 67-68, no. 1, June 2003, pp. 333-337
    [24]A. Alian, C. Merckling, G. Brammertz, M. Meuris, M. Heyns and K. D. Meyer, “InGaAs MOS transistors fabricated through a digital-etch gate-recess process and the influence of forming gas anneal on their electrical behavior,” ECS Journal of Solid State Science and Technology, vol. 1, no. 6, October 2012, pp. 310-314
    [25]V. Djara, K. Cherkaoui, T. Lopez, É. O’Connor, I. M. Povey, K. K. Thomas and P. K. Hurley, “Junctionless InGaAs MOSFETs with InAlAs barrier isolation and channel thinning by digital wet etching,” Device Research Conference (DRC), 71st Annual, June 2013, pp. 131-132
    [26]J. Lin, X. Zhao, D. A. Antoniadis and J. A. del Alamo, “A novel digital etch technique for deeply scaled III-V MOSFETs,” IEEE Electron Device Letters, vol. 35, no. 4, April 2014, pp. 440-442
    [27]X. Zhao and J. A. del Alamo, “Nanometer-scale vertical-sidewall reactive ion etching of InGaAs for 3-D III-V MOSFETs,” IEEE Electron Device Letters, vol. 35, no. 5, May 2014, pp. 521-523
    [28]A. Vardi, X. Zhao and J. A. del Alamo, “InGaAs double-gate fin-sidewall MOSFETs,” Device Research Conference (DRC), 72nd Annual, June 2014, pp.219-220

    [29]S. Lee, C. Y. Huang, A. D. Carter, J. J. M. Law, D. C. Elias, V. Chobpattana, B. J. Thibeault, W. Mitchell, S. Stemmer, A. C. Gossard and M. J. W. Rodwell, “High transconductance surface channel In0.53Ga0.47As MOSFETs using MBE source-drain regrowth and surface digital etching,” Indium Phosphide and Related Materials (IPRM), International Conference, May 2013
    [30]S. D. Burnham, K. Boutros, P. Hashimoto, C. Butler, D. W. S. Wong, M. Hu and M. Micovic, “Gate-recessed normally-off GaN-on-Si HEMT using a new O2-BCl3 digital etching technique,” Phys. Status Solidi C, vol. 7, no. 7-8, July 2010, pp. 2010-2012
    [31]K. A. Reinhardt. and W. Kern., Handbook of Semiconductor Wafer Cleaning Technology, William Andrew Publications, Norwich, 2007, pp. 46-48
    [32]R. C. Henderson., “Silicon Cleaning with Hydrogen Peroxide Solutions: A High Energy Electron Diffraction and Auger Electron Spectroscopy Study,” Journal of The Electrochemical Society , vol. 119, no. 6, 1972, pp. 772-775
    [33]W. Kern.T, S. Shwartzman and A. Mayer, “Megasonic Particle Removal from Solid State Wafers.”, RCA Review., vol. 46, no. 1, 1985, pp. 81-105
    [34]A. Ishizaka and Y. Shiraki, ” Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE,“ Journal of The Electrochemical Society, vol. 113, no. 4, 1986, pp. 666-671
    [35]K. C. Lee, “Investigation of dilute Ammonia hydrogen Peroxide Mixtures (APM) cleaning process in Deep Trench DRAM,” Master’s Thesis, Institute of Semiconductor Material and Process Equipment College of Engineering National Chiao Tung University in Partial Fulfillment of the Requirements for the Degree of Master of Science, June 2009.
    [36]Y. H. Chang, “Investigation on Interface traps of planar GaN MOSFETs with Difference Surface Treatment,” Master’s Thesis, Institute of electronics engineering, National Tsing Hua University, June 2018.
    [37]C. W. Lee, “Fabrication of U-GaN and InGan MOSFETs,” Master’s Thesis, Institute of electronics engineering, National Tsing Hua University, June 2009.

    QR CODE