簡易檢索 / 詳目顯示

研究生: 王大夫
Wang, Tai-Fu
論文名稱: TER94在調控細胞核大小以及結構所扮演的角色
Role of TER94 in regulating nuclear size and structure
指導教授: 桑自剛
Sang, Tzu-Kang
口試委員: 徐瑞洲
Hsu, Jui-Chou
張慧雲
Chang, Hui-Yun
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 62
中文關鍵詞: TER94蛋白Derlin-1蛋白細胞核異常增大
外文關鍵詞: TER94, Derlin-1, nuclear expansion
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞核中儲存著許多的遺傳訊息,掌管著真核生物所有的細胞活性。細胞核的型態以及結構基本上都保持恆定,除非細胞進行分裂,才會有劇烈的變化。但是這個特性不適用在腫瘤細胞中,因為細胞核的增大以及變形在癌細胞中很常見並且是判斷癌細胞的要件之一。在我們先前對於一AAA (ATPase associated with diverse cellular activities) ATPase,TER94的研究中,我們發現表現dominant-negative mutant TER94K2A在果蠅的感光細胞中(R細胞),會使得細胞核異常的增大。這個結果特別的奇妙,因為這些R細胞是已經分化完全並且不會再進行細胞分裂,稱之為post-mitotic的細胞。我們發現維持細胞核大小以及結構需要TER94在細胞核中進行某些功能。為了瞭解TER94功能異常造成細胞核變大的機轉,我們進行了基因篩選並且發現p53可能參與在細胞核異常增大的過程中,p53的基因敲落可以回復TER94K2A過度表現所造成的細胞核異常增大現象。除此之外,mdm2的果蠅同源物corp擁有幫助p53降解的功能,而corp的過度表現也可以抑制細胞核的增大現象,和之前的結果吻合。P53調控很多的生理活性,透過和SREBP合作,他調控著脂質的生物合 成,而因為SREBP基因敲落也抑制細胞核增大現象,我們認為脂質的異常生合成會造成此現象。另外,PCNA是一個DNA複製的指標,在PCNA的染色中我們發現細胞核增大的R細胞內PCNA的訊號明顯增加,表示身為post-mitotic的R細胞可能因為TER94的功能異常而錯誤的重新進入了細胞週期。以上的實驗結果顯示TER94可能擁有一個新的機轉控制p53以及其下游的脂質生合成,此研究將有助於我們了解癌症的發生機制。


    The nucleus houses genetic information to control essentially every aspect of eukaryotic cell activities. The morphology/structure of this organelle is rather stable in general unless the cell is undergoing the division. However, this remark obviously is not applicable in some neoplastic cells in which the increased nuclear size and deformed structure are standard prognostic parameters of cancer. In our previous study of TER94 AAA-ATPase, we found the expression of a dominant-negative mutant TER94K2A in fly photoreceptor cells (R cell) would cause an aberrant nuclear enlargement. This finding is especially intriguing because these R cells are at the end-dividing, postmitotic state. We find that maintaining nuclear size/structure requires TER94 function inside the nucleus. To understand the underlying mechanism of TER94 dysfunction-mediated nuclear expansion, we carried out a genetic screen and identified p53 as a potent modifier in this process. Genetic knockdown of p53 rescues TER94K2A-mediated nucleus enlargement. In agree with this, overexpression of Corp, the fly Mdm2 which antagonize p53 activity, also suppresses the nuclear phenotype. The aberrant nuclear expansion may result from an irregular lipid biosynthesis because the knockdown of SREBP, a partner of p53 in controlling lipid metabolic genes, also suppresses TER94K2A phenotype. To our surprise, we have observed the R cells bearing enlarged nuclei also stained positive for a DNA synthesis marker PCNA, suggesting those postmitotic cells may mistakenly re-enter the cell cycle due to TER94 loss of function. Together, these results point to a novel regulatory mechanism of nuclear TER94 in constraining the master cell cycle protein p53 and its downstream lipid metabolism and may shed light on tumorigenesis.

    Abstract….....................................................................................................................1 中文摘要........................................................................................................................3 致謝................................................................................................................................5 Introduction..................................................................................................................9 Materials and Methods...............................................................................................13 Drosophila stocks and genetics............................................................................13 Immunohistochemistry.........................................................................................13 Transmission electron microscopy.......................................................................14 Results.........................................................................................................................16 TER94K2A overexpression causes nuclear expansion and neurodegeneration................................................................................................16 The nuclear function of TER94 is crucial for maintaining nuclear size and structure................................................................................................................17 Protein degradation defect may be the link between TER94 dysfunction and nuclear expansion.................................................................................................18 FK2 staining shows poly-ubiquitinated proteins accumulate in the enlarged nuclei....................................................................................................................20 P53 downregulation rescues nuclear expansion...................................................21 Knockdown of lipid biosynthesis related genes suppresses nuclear expansion phenotype.............................................................................................................22 Discussions..................................................................................................................24 Figures.........................................................................................................................27 Tables...........................................................................................................................51 References...................................................................................................................60

    Buchberger, A., Schindelin, H., & Hanzelmann, P. (2015). Control of p97 function by cofactor binding. FEBS Lett, 589(19 Pt A), 2578-2589. doi:10.1016/j.febslet.2015.08.028
    Chakraborty, R., Li, Y., Zhou, L., & Golic, K. G. (2015). Corp Regulates P53 in Drosophila melanogaster via a Negative Feedback Loop. PLoS Genet, 11(7), e1005400. doi:10.1371/journal.pgen.1005400
    Chang, Y. C., Hung, W. T., Chang, Y. C., Chang, H. C., Wu, C. L., Chiang, A. S., . . . Sang, T. K. (2011). Pathogenic VCP/TER94 alleles are dominant actives and contribute to neurodegeneration by altering cellular ATP level in a Drosophila IBMPFD model. PLoS Genet, 7(2), e1001288. doi:10.1371/journal.pgen.1001288
    Confalonieri, F., & Duguet, M. (1995). A 200-amino acid ATPase module in search of a basic function. Bioessays, 17(7), 639-650. doi:10.1002/bies.950170710
    Dahl, K. N., Ribeiro, A. J., & Lammerding, J. (2008). Nuclear shape, mechanics, and mechanotransduction. Circ Res, 102(11), 1307-1318. doi:10.1161/CIRCRESAHA.108.173989
    DeLaBarre, B., & Brunger, A. T. (2003). Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Biol, 10(10), 856-863. doi:10.1038/nsb972
    Enenkel, C. (2014). Proteasome dynamics. Biochim Biophys Acta, 1843(1), 39-46. doi:10.1016/j.bbamcr.2013.03.023
    Freed-Pastor, W. A., Mizuno, H., Zhao, X., Langerod, A., Moon, S. H., Rodriguez-Barrueco, R., . . . Prives, C. (2012). Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell, 148(1-2), 244-258. doi:10.1016/j.cell.2011.12.017
    Frohlich, K. U., Fries, H. W., Rudiger, M., Erdmann, R., Botstein, D., & Mecke, D. (1991). Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. J Cell Biol, 114(3), 443-453.
    Goehring, N. W., & Hyman, A. A. (2012). Organelle Growth Control through Limiting Pools of Cytoplasmic Components. Current Biology, 22(9), R330-R339. doi:DOI 10.1016/j.cub.2012.03.046
    Goldstein, I., & Rotter, V. (2012). Regulation of lipid metabolism by p53 - fighting two villains with one sword. Trends Endocrinol Metab, 23(11), 567-575. doi:10.1016/j.tem.2012.06.007
    Hartman, I. Z., Liu, P., Zehmer, J. K., Luby-Phelps, K., Jo, Y., Anderson, R. G., & DeBose-Boyd, R. A. (2010). Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J Biol Chem, 285(25), 19288-19298. doi:10.1074/jbc.M110.134213
    Levy, D. L., & Heald, R. (2010). Nuclear size is regulated by importin alpha and Ntf2 in Xenopus. Cell, 143(2), 288-298. doi:10.1016/j.cell.2010.09.012
    Liang, C. J., Chang, Y. C., Chang, H. C., Wang, C. K., Hung, Y. C., Lin, Y. E., . . . Sang, T. K. (2014). Derlin-1 regulates mutant VCP-linked pathogenesis and endoplasmic reticulum stress-induced apoptosis. PLoS Genet, 10(9), e1004675. doi:10.1371/journal.pgen.1004675
    Maurizi, M. R., & Li, C. C. (2001). AAA proteins: in search of a common molecular basis. International Meeting on Cellular Functions of AAA Proteins. EMBO Rep, 2(11), 980-985. doi:10.1093/embo-reports/kve229
    Moir, D., Stewart, S. E., Osmond, B. C., & Botstein, D. (1982). Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics, 100(4), 547-563.
    Mullen, P. J., Yu, R., Longo, J., Archer, M. C., & Penn, L. Z. (2016). The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer, 16(11), 718-731. doi:10.1038/nrc.2016.76
    Ogura, T., & Wilkinson, A. J. (2001). AAA+ superfamily ATPases: common structure--diverse function. Genes Cells, 6(7), 575-597.
    Olzmann, J. A., Richter, C. M., & Kopito, R. R. (2013). Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc Natl Acad Sci U S A, 110(4), 1345-1350. doi:10.1073/pnas.1213738110
    Pamnani, V., Tamura, T., Lupas, A., Peters, J., Cejka, Z., Ashraf, W., & Baumeister, W. (1997). Cloning, sequencing and expression of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum. FEBS Lett, 404(2-3), 263-268.
    Patel, S., & Latterich, M. (1998). The AAA team: related ATPases with diverse functions. Trends Cell Biol, 8(2), 65-71.
    Peters, J. M., Walsh, M. J., & Franke, W. W. (1990). An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. Embo j, 9(6), 1757-1767.
    Sahara, K., Kogleck, L., Yashiroda, H., & Murata, S. (2014). The mechanism for molecular assembly of the proteasome. Adv Biol Regul, 54, 51-58. doi:10.1016/j.jbior.2013.09.010
    Shao, W., & Espenshade, P. J. (2014). Sterol regulatory element-binding protein (SREBP) cleavage regulates Golgi-to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP). J Biol Chem, 289(11), 7547-7557. doi:10.1074/jbc.M113.545699
    Vale, R. D. (2000). AAA proteins. Lords of the ring. J Cell Biol, 150(1), F13-19.
    Vaz, B., Halder, S., & Ramadan, K. (2013). Role of p97/VCP (Cdc48) in genome stability. Front Genet, 4, 60. doi:10.3389/fgene.2013.00060
    von Mikecz, A. (2006). The nuclear ubiquitin-proteasome system. J Cell Sci, 119(Pt 10), 1977-1984. doi:10.1242/jcs.03008
    Wang, Q., Song, C., & Li, C. C. (2004). Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol, 146(1-2), 44-57. doi:10.1016/j.jsb.2003.11.014
    Webster, M., Witkin, K. L., & Cohen-Fix, O. (2009). Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci, 122(Pt 10), 1477-1486. doi:10.1242/jcs.037333
    Woodman, P. G. (2003). p97, a protein coping with multiple identities. J Cell Sci, 116(Pt 21), 4283-4290. doi:10.1242/jcs.00817
    Zwickl, P., & Baumeister, W. (1999). AAA-ATPases at the crossroads of protein life and death. Nat Cell Biol, 1(4), E97-98. doi:10.1038/12097

    QR CODE