研究生: |
黃子齊 |
---|---|
論文名稱: |
一個以資源導向針對嵌入式系統之高精準度功耗分析的方法 AROMA: A Resource-Oriented Methodology for Highly Accurate Embedded System Power Analysis |
指導教授: |
蔡仁松
Tsay, Ren-Song |
口試委員: |
黃婷婷
Hwang, TingTing 邱瀝毅 Chiou, Lih-Yih |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 設計 、測量 、準確度 、效能 |
外文關鍵詞: | Design, Measurement, Accuracy, Performance |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了達到有效率的系統設計評估,一套快速且精準的功耗分析工具是至關重要的。然而,由於現有技術之間的功耗模型與模擬器的緊密耦合關係,其結果總是令人不滿意地緩慢或是不夠準確。在這篇論文中,我們發現到高階指令總是會觸動相同集合的資源同時造成相同的行為影響。因此,我們提出一個嶄新的概念:透過映射高階指令與低階微架構元件來達到有效率地資源導向功耗估測。
藉由預先描繪指令與資源間精細的影響,我們可以相當有效率地利用高階指令集模擬器來計算精確的功耗數值。除此之外,根據資源的概念,我們可以精確且毫不費力地獲得任一時間點的功耗變化曲線、峰值功耗,以及動態熱能分佈分析。實驗數據顯示我們所提出的『資源導向』方法,其準確度與閘極層級的功耗模擬器相當接近,相較誤差值僅在百分之一點二以內;同時模擬速度可達到每秒兩千萬個指令,等同於閘極層級的功耗模擬器的五萬倍以上。
Fast and accurate power analysis tools are crucial for effective system design evaluations. However, due to the tight coupling between power models and simulators, existing techniques are either unsatisfactorily slow or inaccurate. In this thesis, we observe that a high-level instruction execution always triggers a same set of resources and leads to same activity effects. Hence, we propose a new idea that maps instructions to microarchitecture components for efficient resource-oriented power evaluations. By pre-characterizing the instruction-resource effects in details, we can efficiently compute accurate power values using high-level instruction-set simulators. Furthermore, based on the concept of resource we can accurately and effortlessly capture the power waveform at any time point for power profile, peak power and dynamic thermal distribution analysis. The experimental results show that the proposed approach is nearly as accurate as gate-level simulators, with less than 1.2% error rate while achieving a simulation speed up to 20 MIPS, five orders faster than a commercial gate-level simulator.
[1] C. X. Huang, B. Zhang, A. Deng, and B. Swirski, “Design and implementation of PowerMill,” in Proc. of ISLPED, pp. 105–109, 1995.
[2] S. Powell and E. M. Chau, “Estimating power dissipation of VLSI signal processing chips: the PFA technique,” in VLSI Signal Processing IV, pp. 250–259, 1990.
[3] D. Marculescu, R. Marculescu, and M. Pedram, “Information theoretic measures of energy consumption at register transfer level. In Proc. of ISLPD,” page 81, April 1995.
[4] T. Chou and K. Roy, “Accurate power estimation of CMOS sequential circuits,” in Proc. of IEEE VLSI Systems, 1996.
[5] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization based on clustering,” in Proc. of DAC, page 702, June 1996.
[6] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The design and use of SimplePower: A cycle-accurate energy estimation tool,” in Proc. of DAC, 2000.
[7] D. Brooks, V. Tiwari, and M.Martonosi, “Wattch: a Framework for Architectural-Level Power Analysis and Optimizations,” in Proc. of ISCA, 2000, pp. 83-94.
[8] A. Bhattacharjee, G. Contreras and M. Martonosi, “Full-system chip multiprocessor power evaluations using FPGA-based emulation,” in Proc. of ISLPED, 2008.
[9] E. Copty, G. Kamhi, and S. Novakovsky, “Transaction level statistical analysis for efficient microarchitecture power and performance studies,” in Proc. of DAC, Jun. 2011.
[10] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first step toward software power minimization,” in Proc. of IEEE Trans. VLSI Syst., vol. 2, Dec. 1994, pp. 437–445.
[11] T. C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power Analysis and Minimization Techniques for Embedded DSP Software,” in Proc. of Transactions of VLSI Systems, 1997, pp. 123-135.
[12] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, “Instruction-Level Power Estimation for Embedded VLIW Cores,” in Proc. of CODES, 2000, pp. 34-38.
[13] A. Varma, B. Jacob, E. Debes, I. Kozintsev, and P Klein, “Accurate and Fast System-Level Power Modeling: An XScale-Based Case Study,” in Proc. of TECS, vol. 7, issue 3, 2008.
[14] N. Kroupis, and D. Soudris, “FILESPPA: Fast Instruction Level Embedded System Power and Performance Analyzer,” in Proc. of Microprocessors and Microsystems, vol.35, issue 3, 2011.
[15] A. Gerstlauer, S. Chakravarty, M. Kathuria, and P. Razaghi, “Abstract System-Level Models for Early Performance and Power Exploration,” in Proc. of ASP-DAC, pp. 213-218, 2012.
[16] Y. H. Park, S. Pasricha, F. J. Kurdahi, and N. Dutt, “A Multi-Granularity Power Modeling Methodology for Embedded Processors,” in Proc. of IEEE Transactions on VLSI Systems, pp. 668-681, 2011.
[17] OpenCores, “OpenRISC 1000 Family,” http://www.opencores.org
[18] Y. L. Lo, M. L. Li, and R. S. Tsay, “Cycle Count Accurate Memory Modeling in System Level Design,” in Proc. of CODES+ISSS, pp. 287-294, 2009.
[19] Synopsys Design Compiler, Prime-Time PX, Power Compiler, 2007, http://www.synopsys.com
[20] HotSpot 5.0 Temperature Modeling Tool, http://lava.cs.virginia.edu/HotSpot/