簡易檢索 / 詳目顯示

研究生: 吳丞彬
Wu, Cheng-Bing
論文名稱: 在三維多核心積體電路的架構下透過動態電壓頻率調整技術設計能量有效率利用任務排程
Energy-Efficient Task Scheduling for DVFS-Multi-Core 3D IC
指導教授: 林永隆
Lin, Youn-Long
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 59
中文關鍵詞: 排程動態電壓 頻率調整多核三維積體電路
外文關鍵詞: scheduling, DVFS, multi-core, 3D IC
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於未來高效能運算而言,能量有效率利用是很重要的。過度的能量消耗會產生嚴重的熱問題,這不僅會影響系統的可靠度,同時也會影響系統的效能。我們藉由動態電壓頻率調整技術,著重在一個從系統階層角度降低整體能量消耗的任務排程。主要針對具有多核心架構的三維積體電路,我們提出了一個具有時間限制的任務排程系統。我們的目標是在給定的條件下,達到能量消耗最小化的任務安排。實驗結果顯示我們的演算法對於能量消耗的最小化是具有顯著效果的。


    Energy-efficiency is important for future high-performance computing. Excessive energy consumption introduces serious thermal problems, which affect not only the system reliability but also the system performance. We focus on an OS-level scheduling to reduce energy consumption via a Dynamic Voltage and Frequency Scaling (DVFS) technique. We proposed a time-constrained task scheduler targeted toward a multi-core 3D IC. Our goal is to minimize the total energy consumption. Experimental results show that our algorithm is effective in energy minimization.

    Abstract 2 Contents 3 List of Figures 4 List of Tables 6 Chapter 1 Introduction 7 Chapter 2 Related Work 9 Chapter 3 Problem Formulation 11 Chapter 4 Preliminaries 18 4.1 Power Model 18 4.2 Task Model 19 Chapter 5 Task Scheduler 21 5.1 System Overview 21 5.2 Algorithm 22 5.3 Task-to-Core Mapping 25 5.4 Priority Function 28 Chapter 6 Experimental Results 35 6.1 Experiment Setting 35 6.2 Energy-Saving-Rate Comparison 42 6.3 Task Scheduler Performance 50 Chapter 7 Conclusion 56 Bibliography 57

    [1] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, “A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS”, Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2010.
    [2] Tilera Corporation, http://www.tilera.com.
    [3] O. Mencer, K.H. Tsoi, S. Craimer, T. Todman, W. Luk, M.Y. Wong, and P.H.W. Leong, “Cube: A 512-fpga cluster”, Proceedings of IEEE Southern Programmable Logic Conference, 2009.
    [4] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to multiprocessors”, ACM Computing Surveys, 1999.
    [5] S. Raje and M. Sarrafzadeh, “Variable voltage scheduling”, Proceedings of International Symposium on Low Power Design, 1995.
    [6] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, “Optimizing power using transformations”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1995.
    [7] T. Pering and R. Broderson, “Energy efficient voltage scheduling for real-time operating systems”, Proceedings of IEEE Real-Time Technology and Applications Symposium, 1998.
    [8] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen, “HYPER-LP: A system for power minimization using architectural transformations”, Proceedings of IEEE/ACM International Conference on Computer-Aided Design, 1992.
    [9] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically variable voltage processors”, Proceedings of International Symposium on Low Power Electronics and Design, 1998.
    [10] Y. Zhang, X. Hu, and D. Chen, “Task scheduling and voltage selection for energy minimization”, Proceedings of IEEE Design Automation Conference, 2002.
    [11] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven floorplanning algorithm for 3D ICs”, Proceedings of IEEE International Conference on Computer-Aided Design, 2004.
    [12] J. Cong and Y. Zhang, “Thermal via planning for 3-D ICs”, Proceedings of IEEE/ACM International Conference on Computer-aided design, 2005.
    [13] M. S. Bakir, C. King, D. Sekar, H. Thacker, B. Dang, G. Huang, A. Naeemi, and J. D. Meindl, “3D heterogeneous integrated systems: liquid cooling, power delivery, and implementation”, Proceedings of IEEE Custom Integrated Circuits Conference, 2008.
    [14] X. Zhou, Y. Xu, Y. Du, Y. Zhang and J. Yang, “Thermal management for 3D processors via task scheduling”, Proceedings of International Conference on Parallel Processing, 2008.
    [15] C. Sun, L. Shang, and R. P. Dick, “Three-dimensional multi-processor system-on-chip thermal optimization”, Proceedings of International Conference Hardware/Software Codesign and System Synthesis, 2007.
    [16] A. K. Coskun, D. Atienza, T. Rosing, T. Brunschwiler, and B. Michel, “Energy-efficient variable-flow liquid cooling in 3D stacked architectures”, Proceedings of Design Automation and Test in Europe, 2010.
    [17] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling and power management for chip multiprocessors”, Proceedings of International Symposium on Computer Architecture, 2008.
    [18] Saurabh Dighe, Sriram Vangal, Paolo Aseron, “Within-die variation-aware dynamic-voltage-frequency scaling core mapping and thread hopping for an 80-core processor”, Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2010.
    [19] Y.-R. Lin, C.-T. Hwang, and A.C.-H Wu, “Scheduling techniques for variable voltage low power designs”, ACM Transactions on Design Automation of Electronic Systems, 1997.
    [20] T.L. Adam, K.M. Chandy, and J. Dickson, “A comparison of list scheduling for parallel processing systems”, Communications of the ACM, 1974.
    [21] Standard Task Graph Set, Kasahara Laboratory Department of Electrical, Electronics and Computer Engineering, Waseda University, Available: http://www.kasahara.elec.waseda.ac.jp/schedule/index.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE