研究生: |
陳謙之 Chen, Chien-Chih |
---|---|
論文名稱: |
以標準0.18μm CMOS製程製作附有電流校正機制之12V-500μA神經刺激器 A 12V-500μA Neuron Stimulator implemented in Standard 0.18μm CMOS Process with Current Calibration Mechanism |
指導教授: |
鄭桂忠
Tang, Kea-Tiong |
口試委員: |
陳新
李順裕 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 功能性電刺激 、神經刺激電路 、生醫植入式裝置 |
外文關鍵詞: | Functional electrical stimulation, neuron stimulator, biomedical implantable device |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,生醫電子已經越來越受到人們的注意以及重視,其中許多研究報告顯示,功能性電刺激可以用來治療許多已知的神經性疾病,或修補因神經損傷而造成的殘疾,恢復部分器官功能,進而改善病人的生活品質。神經刺激電路為功能性電刺激不可或缺的部分,掌管控制刺激訊號,其在設計上常面臨到兩個主要挑戰,一為需要較高的供應電壓,以輸出足夠大的刺激電流;另一為需保持刺激後的殘餘電荷夠小,以避免造成對電極的損害。高供應電壓的問題可藉由使用高壓製程或厚氧化層製程來解決,但前者成本高,後者面積大。
本論文使用一電壓限制技巧,限制每個元件所看到的電壓皆在其能承受的範圍以避免崩壞,並使用TSMC 0.18μm CMOS製程,製做可在12V供應電壓下操作的神經刺激電路,並附加一電流校正電路以減小殘餘電荷量至安全範圍內。在量測中,已成功輸出振幅為500μA的Bi-Phasic波形,並將陰極電流與陽極電流的差距縮小至0.57μA內,DAC的INL最大為1.468LSB,DNL最大為0.393LSB,其輸出電流振幅、輸出頻率與輸出脈衝寬度皆可調整。本電路經過連續三天操作,其功能依然保持正常。
Bio-medical implantable devices have drawn more and more attention in recent years. Functional electrical stimulation (FES) has high potential to partially repair or at least improve the physiological function of patients suffering from neuron damage. Stimulators for this purpose usually face two design challenges of the required high supply voltage for compliance voltage, and the residual charge which eventually causes electrode corrosion. Using a voltage limit technique, a stimulator which can withstand 12V supply voltage is proposed in this study. A current calibration mechanism is added to limit the amount of residual charge within a safe range. The simulator has been fabricated using TSMC 0.18μm technology. Experimental results show that stimulation current up to 500μA could be delivered, and the current mismatch is less than 0.57μA. The stimulator successfully generated a 60 Hz biphasic stimulation waveform, whose amplitude and pulse width was tunable.
[1] P.R. Singh, Wentai Liu, M. Sivaprakasam, M.S. Humayun, J.D. Weiland, “A matched biphasic microstimulator for an implantable retinal prosthetic device Circuits and Systems,” IEEE International Symposium on Circuits and Systems, May 2004, pp. 23 – 26.
[2] R. Shepherd, “Chronic electrical stimulation of the auditory nerve using non-charge-balanced stimuli,” Acta oto-laryngologica, vol. 119, no. 6, pp. 674–684, 1999.
[3] Djourno A, Eyries C. 'Prothese auditive par excitation electrique a distance du nerf sensoriel a l'aide d'un bobinage inclus a demeure.' In: La Presse Medicale 65 no.63. 1957.
[4] Djourno A, Eyries C, 'Vallencien B. De l'excitation electrique du nerf cochleaire chez l'homme, par induction a distance, a l'aide d'un micro-bobinage inclus a demeure.' CR de la societe.de biologie. 423-4. March 9, 1957.
[5] Berruecos, Pedro. Cochlear implants: An international perspective - Latin American countries and Spain, Vol. 39, pp. 221-225, 2000.
[6] Eisen MD, 'Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing.' in: Otology and Neurotology. 2003 May;24(3):500-6.
[7] Johnston, Trevor. Whither the Deaf Community In 'American Annals of the Deaf' (volume 148 no. 5),
[8] tovsky, Ruth Y., et al. "Bilateral Cochlear Implants in Children: Localization Acuity Measured with Minimum Audible Angle." Ear & Hearing, 2006; 27; 43-59.
[9] Officiers, P.E., et. a. "International Consensus on bilateral cochlear implants and bimodal stimulation." Acta Oto-Laryngologica, 2005; 125; 918-919.
[10] Reefhuis J, et al. Risk of Bacterial Meningitis in Children with Cochlear Implants, USA 1997-2002. New England Journal of Medicine, 2003; 349:435-445.
[11] Spencer, Patricia Elizabeth and Marc Marschark. Cochlear Implants: Issues and Implications. In 'Oxford Handbook of Deaf Studies, Language and Education', ed. Marc Marschark and Patricia Elizabeth Spencer, 434-450. Oxford: Oxford University Press, 2003.
[12] Furman S, Szarka G, Layvand D, "Reconstruction of Hyman's second pacemaker", Pacing Clin Electrophysiol.2005 May;28(5):446-453
[13] Bernstein A, Daubert J, Fletcher R, Hayes D, Luderitz B, Reynolds D, Schoenfeld M, Sutton R (2002). "The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and Electrophysiology Group". Pacing Clin Electrophysiol 25 (2): 260-4
[14] Cleland JGF, Daubert J-C, Erdmann E, et al; the Cardiac Resynchronization - Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005 March 7
[15] Cleland J, Daubert J, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L (2005). "The effect of cardiac resynchronization on morbidity and mortality in heart failure". N Engl J Med 352 (15): 1539-49
[16] Bristow M, Saxon L, Boehmer J, Krueger S, Kass D, De Marco T, Carson P, DiCarlo L, DeMets D, White B, DeVries D, Feldman A (2004). "Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure". N Engl J Med 350 (21): 2140-50
[17] Wilkoff BL, Cook JR, Epstein AE, et al.: Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual-chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA 2002, 288: 3115–3123
[18] Chun DW, Heier JS, Raizman MB. (2005). "Visual prosthetic device for bilateral end-stage macular degeneration.". Expert Rev Med Devices. 2 (6): 657-65
[19] Lane SS, Kuppermann BD, Fine IH, Hamill MB, Gordon JF, Chuck RS, Hoffman RS, Packer M, Koch DD. (2004). "A prospective multicenter clinical trial to evaluate the safety and effectiveness of the implantable miniature telescope.". Am J Ophthalmol. 137 (6): 993-1001.
[20] Lane SS, Kuppermann BD. (2006). "The Implantable Miniature Telescope for macular degeneration.". Curr Opin Ophthalmol. 17 (1): 94-8
[21] J.D. Loudin, D.M. Simanovskii, K. Vijayraghavan, C.K. Sramek, A.F. Butterwick, P. Huie, G.Y. McLean, and D.V. Palanker (2007). "Optoelectronic retinal prosthesis: system design and performance". J Neural Engineering 4: S72–S84
[22] AT Villavicencio, JC Leveque, L Rubin, K Bulsara, JP Gorecki (2000). "Laminectomy versus percutaneous electrode placement for spinal cord stimulation". Neurosurgery 46 (2): 399-405; discussion 405-6.
[23] JC Oakley, JP Prager (2002). "Spinal cord stimulation: mechanisms of action". Spine 27: 2574-83
[24] MS. Matharu, T, Bartsch N Ward, RS Frackowiak, R Weiner, PJ Goadsby (2004). "Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study". Brain 127 (Pt 1): 220-30
[25] RB North, DH Kidd, F Farrokhi, SA Piantadosi (2005). "Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial". Neurosurgery 56 (1): 98-106; discussion 106-7
[26] RA Schmidt, A Jonas, KA Oleson, RA Janknegt, MM Hassouna, SW Siegel, PE van Kerrebroeck. Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral nerve study group. J Urol 1999 Aug;16(2):352-357
[27] GS Brindley, CE Polkey, DN Rushton (1982): Sacral anterior root stimulator for bladder control in paraplegia. Paraplegia 20: 365-381
[28] S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith, "A direct brain interface based on event-related potentials," IEEE Trans Rehabil Eng, vol. 8, pp. 180-5, 2000
[29] J Wessberg, CR Stambaugh, JD Kralik, PD Beck, M Laubach, JK Chapin, J Kim, SJ Biggs, MA Srinivasan, MA Nicolelis. (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 16: 361-365
[30] J.M Carmena, M.A. Lebedev, R.E. Crist, J.E. O’Doherty, D.M. Santucci, , D.F. Dimitrov, P.G. Patil , C.S. Henriquez, M.A.L. Nicolelis, (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, 1: 193-208
[31] M.A. Lebedev, J.M. Carmena , J.E. O’Doherty, M. Zacksenhouse, C.S. Henriquez , J.C. Principe, M.A.L. Nicolelis, (2005) Cortical ensemble adaptation to represent actuators controlled by a brain machine interface. J. Neurosci. 25: 4681-4693
[32] M.D. Serruya, N.G. Hatsopoulos, L. Paninski, M.R. Fellows, J.P. Donoghue,(2002) Instant neural control of a movement signal. Nature 416: 141-142
[33] L. S. Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas, “A very low-powerCMOSmixed signal IC for implantable pacemaker applications,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2446–2456, Dec. 2004.
[34] M. Schwarz and M. Haschmann, “Area saving stimulator cells for multielectrode arrays featuring adaptive waveform generation and monitoring,” in Proc. IEEE Eng. Med. Biol. Conf., 2004, vol. 2, pp. 4314–4317.
[35] S. K. Kelly and J. Wyatt, “A power-efficient voltage-based neural tissue stimulator with energy recovery,” in Proc. Int. Solid-State Circuits Conf., Feb. 2004, vol. 1, pp. 228–524.
[36] R. A. Blum, J. D. Ross, E. A. Brown, and S. P. DeWerth, “An integrated system for simultaneous, multichannel neuronal stimulation and recording,” IEEE Tran. Circuits Sysyt., vol. 54, no. 12, pp. 2608–2618, Dec. 2007.
[37] F. Shahronkhi, K. Abdelhalim, and R. Genov, “128-channel fully differential digital neural recording and stimulation interface,” in Proc.IEEE Int. Symp. Circuits and Systems, 2009, pp. 1249–1252.
[38] X. Liu, A. Demosthenous, and N. Donaldson, “A fully integrated failsafe stimulator output stage dedicated to FES stimulation,” in Proc. IEEE Int. Symp. Circuits and Systems, 2006, pp. 2076–2079.
[39] M. Ghovanlo, O. Favorov, R. W. Murrow, and M. Tommerdahl, “Development of a switched-capacitor based neurostimulating system for low-power head-mounted deep brain stimulators,” presented at the NIH-NNDS Neural Interfaces Workshop in DC, Sep. 2005.
[40] M. Ghovanloo, “Switched-capactior based implantable low-power wireless microstimulating systems,” in Proc. IEEE Int. Symp. On Circuits and Systems, May 2006, pp. 2197–2200.
[41] W. Liu, K. Vichienchom, M. Clements, S.C. DeMarco, C. Hughes, E. McGucken, M.S. Humayun, E. De Juan, J.D. Weiland, and R. Greenberg, “A neuro-stimulus chip with telemetry unit for retinal prosthetic device,” IEEE J. Solid-State Circuits, Vol. 35, no. 10, pp. 1487 – 1497, Oct. 2000.
[42] X. Liu, A. Demosthenous, N. Donaldson, “An Integrated Stimulator With DC-Isolation and Fine Current Control for Implanted Nerve Tripoles,” IEEE J. Solid-State Circuits, Vol. 46, no. 7, pp. 1701 – 1714, Oct. 2011.
[43] D. Jiang, A. Demosthenous, D. Cirmirakis, T. A. Perkins, N. Donaldson, “Design of a stimulator ASIC for an implantable vestibular neural prosthesis,” IEEE Biomedical Circuit and Systems Conference, Nov. 2010, pp. 206 – 209.
[44] X. Fang, J. Wills, J. Granacki, J. LaCoss, J. Choma, “CMOS charge-metering microstimulator for implantable prosthetic device,” Midwest Symposium on Circuits and Systems, Aug. 2008, pp.826-829.
[45] J. Sit and R. Sarpeshkar, “A low-power blocking-capacitor-free chargebalanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation,” IEEE Trans. Biomed. Circuits Syst, vol. 1, no. 3, pp. 172–183, 2007.
[46] E. Lee, A. Lam, A. Found, and C. Santa Clarita, “A matching technique for biphasic stimulation pulse,” IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007, 2007, pp. 817–820.
[47] S. Guo and H. Lee, “Biphasic-current-pulse self-calibration techniques for monopolar current stimulation,” IEEE Biomedical Circuits and Systems Conference, 2009, pp. 61–64.
[48] Hosung Chun, Torsten Lehmann, Yuanyuan Yang, “Implantable Stimulator For Bipolar Stimulation Without Charge Balancing Circuits,” IEEE Biomedical Circuits and Systems Conference, 2010, pp. 202–205.
[49] TSMC 0.18 UM MIXED SIGNAL 1P6M SALICIDE 1.8V/3.3V RF SPICE MODELS.
[50] D. Seo, H. dabag, Y. Guo, M. Mishra, G. H. McAllister, “High-Voltage-Tolerant Analog Circuits Design in Deep-Submicrometer CMOS Technologies,” IEEE Transactions on Circuits and Systems I, vol. 54, no.10, pp. 2159-5166, 2007.
[51] J.C. Garcia, J.A. Montiel-Nelson, S. Nooshabadi, “High performance CMOS dual supply level shifter for a 0.5V input and 1V output in standard 1.2V 65nm technology process,” International Symposium on Communications and Information Technology, 2009, pp.963-966.
[52] R. Garg, G. Mallarapu, S.P. Khatri, “A Single-supply True Voltage Level Shifter,” Desing, Automation and Test in Europe, 2008, pp.979-984.
[53] M. Khorasani, L. van den Berg, P. Marshall, M. Zargham, V. Gaudet, D. Elliott, S. Martel, “Low-power static and dynamic high-voltage CMOS level-shifter circuits,” IEEE International Symposium on Circuits and Systems, 2008, pp. 1946–1949.
[54] A-J. Annema, G.J.G.M. Geelen, P.C. de Jong, “5.5-V I/O in a 2.5-V 0.25-μm CMOS technology,” IEEE J. Solid-State Circuits, Vol. 36, no. 3, pp. 528 – 538, Mar. 2001.
[55] B. Serneels, T. Piessens, M. Steyaert, W. Dehaene, “A high-voltage output driver in a 2.5-V 0.25-μm CMOS technology,” IEEE J. Solid-State Circuits, Vol. 40, no. 3, pp. 576 – 583, Mar. 2005.
[56] E. J. Mentze, K. M. Buck, H. L. Hess, D. Cox, M. Mojarradi, “A low voltage to high voltage level shifter in a low voltage, 0.25μm PD SOI process,” IEEE Computer society Annual Symposium on VLSI, 2004, pp. 218-221.
[57] E. J. Mentze, H. L. Hess, K. M. Buck, T. G. Windley, “A Scalable High-Voltage Output Driver for Low-Voltage CMOS Technologies,” IEEE Transactions on VLSI, Vol. 14, no.12, pp.1347-1353, Dec. 2006.
[58] E.K.F. Lee, “A 3 - 14V rail-to-rail constant gm opamp in conventional 0.18μm CMOS process,” Custom Integrated Circuits Conference, 2009, pp.467-470.
[59] E.K.F. Lee, “High-voltage tolerant stimulation monitoring circuit in conventional CMOS process,” Custom Integrated Circuits Conference, 2009, pp.93-96
[60] P. Haxucha, S.T. Moon, G. Schrom, F. Paillet, D. Gardner, S. Rajapandian, T. Karnik, “High Voltage Tolerant Linear Regulator With Fast Digital Control for Biasing of Integrated DC-DC Converters,” IEEE J. Solid-State Circuits, Vol. 42, no. 1, pp. 66 – 73, Jan. 2007.
[61] S. Rajapandian, K. Shepard, P. Hazucha, T. Karnik, “High-tension power delivery: operating 0.18 μm CMOS digital logic at 5.4V,” IEEE International Solid-State Circuits Conference, 2005, pp. 298-599.
[62] H.C Wu, S.T Young, T.S. Kuo, “A versatile multichannel direct-synthesized electrical stimulator for FES applications,” Transactions on Instrumentation and Measurement, Vol. 51, no. 1, pp. 2-9, Feb. 2002.
[63] G. Gudnason, E. Bruun, M. Haugland, “An implantable mixed analog/digital neural stimulator circuit,” IEEE International Symposium on Circuits and Systems, 1999, pp. 375-378.
[64] M. Sivaprakasam, W. Liu, M.S. Humayun, and J.D. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 763 - 771, Mar. 2005.
[65] M. Ortmanns, A. Rocke, M. Gehrke, H-J. Tiedtke, “A 232-Channel Epiretinal Stimulator ASIC,” IEEE J. Solid-State Circuits, Vol. 42, no. 12, pp. 2946 – 2959, Dec. 2007.
[66] K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, W. Liu, “An Integrated 256-Channel Epiretinal Prosthesis,” IEEE J. Solid-State Circuits, Vol. 45, no. 9, pp. 1946– 1956, Sep. 2010.
[67] M. Sivaprakasam, W. Liu, G. Wang, L. Hoang, J. Weiland, M. Humayun, “Towards a Modular 32 x 32 Pixel Stimulator for Retinal Prosthesis,” Life Science Systems and Applications Workshop, 2006, pp. 1-2.
[68] P. Swaroop, A.J. Vasani, M. Ghovanloo, “A High-Voltage Output Driver for Implantable Biomedical Stimulators and I/O Applications,” IEEE International Midwest Symposium on Circuits and Systems, vol. 1, pp. 566-569, 2006.
[69] L. Y. Lin, K. T. Tang, "A High-Voltage Neuron Stimulator in 0.18μm CMOS Process for Biomedical Implantable Devices," International Symposium on Bioelectronics and Bioinformatics, 2009.
[70] B.K. Thurgood, D.J. Warren, N.M. Ledbetter, G.A. Clark, R.R.Harrison, “A Wireless Integrated Circuit for 100-Channel Charge-Balanced Neural Stimulation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 3, No. 6, pp. 405-414, Dec. 2009.
[71] T. Tokuda, K. Hiyama, S. Sawamura, K. Sasagawa, Y. Terasawa, K. Kitaguchi, T. Fujikado, Y. Tano, J. Ohta, “CMOS-Based Multichip Networked Flexible Retinal Stimulator Designed for Image-Based Retinal Prosthesis,” IEEE Transactions on Electron Devices, vol. 56, no. 11, pp. 2577-2585, Nov. 2009.