簡易檢索 / 詳目顯示

研究生: 李柏陞
Lee, Po-Sheng
論文名稱: 藉由摻雜及表面改質提升二氧化錫的光電及感測性質之研究
Through Doping and Surface Modification to Improve the Optoelectronic and Sensing Properties of Tin Oxides
指導教授: 張一熙
Chang, Yee-Shyi
施漢章
Shih, Han C.
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 二氧化錫FIBgas sensorUV sensor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract

    The Sb-doped SnO2 (ATO) nanowires have been synthesized on an alumina substrate using thermal evaporation with various growth durations of 1, 1.5 and 2 h. The morphology and structure of Sb-doped SnO2 nanowires were characterized by a field emission scanning electron microscope (FESEM), an x-ray diffraction (XRD) spectrometer and a transmission electron microscope (TEM). The chemical composition and bonding were investigated by x-ray photoelectron spectroscopy (XPS), which shows that the Sb concentration of the nanowires increases with increasing growth durations. It is found that the electrical conductance of a single ATO nanowire- and nanowire films-based devices both increase with growth durations. Additionally, the photon-sensing measurement shows that the photon-sensing properties are improved with doping Sb into SnO2 nanowires, which provides a practicable method for the fabrication of ATO nanowire-based photodetectors. At room temperature, the Sb-doped SnO2 nanowires exhibit a high sensitivity towards ethanol gas of concentrations ranging from 50 to 500 ppm. Comparative gas sensing results reveal that the prepared Sb-doped SnO2 nanowires sensors exhibit a much higher sensing sensitivity and recovery property in detecting ethanol gas at room temperature than the pure SnO2 nanowires sensor.
    We also use the atomic layer deposition system to deposit the nano-size Zinc Oxide particles on the Tin Oxide nanowire in order to forming the core-shell structure. Then, the electrical conductance and photon-sensing measurement show that the core-shell structure improves the electrical properties and shorten the photon-sensing recovery time significantly.


    目錄 摘要 Abstract 誌謝 目錄 圖目錄 第一章序論 第二章文獻回顧 2.1一維奈米材料的介 紹 2.2一維奈米材料成長機制 2.2-1氣-固(Vapor-Solid, VS)機制 2.2-2氣-液-固(Vapor-Liquid-Solid, VLS) 2.2-3溶液-液-固(Solution-Liquid-Solid, SLS) 2.3二氧化錫的性質與應用 2.4摻混雜質元素的奈米氧化物 2.5原子層沉積系統(Atomic Layer Deposition System) 2.6氣體感測特性 2.7 UV光感測特性 第三章實驗的步驟及方法 3.1實驗方法概述 3.2合成純二氧化錫奈米線 3.3合成摻雜銻元素之二氧化錫奈米結構 3.3-1製備摻雜銻之二氧化錫奈米線並控制持溫時間 3.4合成二氧化錫-氧化鋅核殼一維奈米結構物 3.5實驗設備 3.5-1高溫爐管 3.5-2鍍金機 3.5-3原子層沉積系統 3.6分析儀器 3.6-1場發射掃描式電子顯微鏡 3.6-2場發射穿透式電子顯微鏡(HR-TEM) 3.6-3低掠角X光粉末繞射儀 3.6-4 X光光電子能譜儀(XPS) 3.6-5聚焦離子束與電子束顯微鏡 3.6-6電性量測 3.6-7氣體感測 3.6-8 UV光感測 第四章結果與討論 4.1一維純二氧化錫奈米結構 4.1-1二氧化錫奈米線 4.1-2形貌分析 4.1-3電子顯微鏡影像分析 4.1-4 X光光電子能譜儀成分分析 4.2摻雜銻之二氧化錫奈米結構 4.2-1 ATO奈米線(持溫時間為30分鐘) 4.2-1-1形貌分析 4.2-2 ATO奈米線(持溫時間為60、90、120分鐘) 4.2-2-1形貌分析 4.2-2-2結構分析 4.2-2-3電子顯微鏡影像及mapping 4.2-2-4 X光光電子能譜儀成分分析 4.3單根奈米線的電性量測 4.3-1試片製備 4.3-2量測方式 4.3-3量測結果及討論 4.4摻雜銻之二氧化錫奈米線UV光感測及酒精氣體感測性質 4.4-1感測裝置(sensor device)製備 4.4-2 UV光感測應用 4.4-3 UV光感測機制 4.4-4酒精氣體感測 4.4-5酒精氣體感測機制 4.5二氧化錫-氧化鋅核殼奈米結構 4.5-1二氧化錫-氧化鋅核殼一維奈米結構物 4.5-1-1電子顯微鏡影像 4.5-1-2結構分析 4.5-1-3 X光光電子能譜儀成分分析 4.6二氧化錫-氧化鋅核殼結構UV光感測應用 4.6-1感測裝置(sensor device)電性量測 4.6-2 UV光感測應用 第五章結論 第六章未來展望 第七章參考文獻

    第七章參考文獻

    [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 1991, Vol. 354, 56
    [2] U.S. Chen, Y.L. Chueh, S.H. Lai, L.J. Chou, H.C. Shih, “Synthesis and characterization of self-catalyzed CuO nanorods on Cu/TaN/Si assembly using vacuum-arc Cu deposition and vapor-solid reaction”, J. Vac. Sci. Technol. B 2006, 24(1), 139
    [3] S.H. Tsai, C.T. Shiu, S.H. Lai, H.C. Shih, “Tubes on tube—a novel form of aligned carbon nanotubes”, Carbon, 2002, 40, 1597
    [4] J.M. Wu, H.C. Shih, and W.T. Wu, “Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation”, Nanotechnology, 2005, 16, 1–5
    [5] M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, “Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries”, Angew. Chem. Int. Ed, 2007, 46, 750
    [6] Z. Ying, Q. Wan, H. Cao, Z.T. Song, S.L. Feng, “Characterization of SnO2 nanowires as an anode material for Li-ion batteries”, Appl. Phys. Lett, 2005, 87, 113108
    [7] S. Chappel, S.G. Chen, A. Zaban, “TiO2-Coated Nanoporous SnO2 Electrodes for Dye-Sensitized Solar Cells”, Langmuir, 2002, 18, 3336

    [8] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, “Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles”, Nano. Lett, 2005, 5, 667
    [9] R.S. Wagner, W.C. Ellis, “Vapor-Solid-Growth Mechanism of Single Crystal Growth”, Appl. Phys. Lett, 1964, 4, 89
    [10] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimentional nanostructures: Synthesis, Characterization, and Application”, Adv. Mater, 2003, 15, No. 5, 353
    [11] T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth ”, Science, 1995, 270, No. 5243, 1791
    [12] M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, “Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries”, Angew. Chem. Int. Ed, 2007, 46, 750
    [13] Z.R. Dai, Z.W. Pan, and Z.L. Wang, “Novel nanostructure of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater, 2003, 13, No. 1, 9
    [14] H. Huang, Y.C. Lee, O.K. Tan, W. Zhou, N. Peng and Q. Zhang, “Novel nanostructure of functional oxides synthesized by thermal evaporation”, Nanotechnology, 2009, 20, 115501

    [15] J. Liu, X. Chen, W. Wang, B. Song, and Q. Huang, “Secondary Facet-Selective Nucleation and Growth: Highly Oriented Straight SnO2 Nanowire Arrays on Primary Microrods”, Crystal Growth & Design, 2009, Vol. 9, No. 4
    [16] A. Chen, X. Peng, K. Koczkur and B. Miller, “Super-hydrophobic tin oxide nanoflowers”, Chem. Commun, 2004, 1964-1965
    [17] L. Qin, J. Xu, X. Dong, Q. Pan, Z. Cheng, Q. Xiang and F. Li, “The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors”, Nanotechnology, 2008, 19, 185705
    [18] Y. Liu, J. Dong, and M. Liu, “Well-Aligned Nano-Box-Beams of SnO2”, Adv. Mater, 2004, 16, No.4, 353
    [19] Y. Lilach, J.P. Zhang, M. Moskovits, and A. Kolmakov, “Encoding Morphology in Oxide Nanostructures during Their Growth”, Nano Lett, 2005, Vol. 5, No. 10
    [20] Q. Kunag, C. Lao, Z.L. Wang, Z. Xie, L. Zheng, “High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire”, J. Am. Chem. Soc, 2007, 129, 6070
    [21] M. Law, H. Kind, B. Messer, F. Kim, P. Yang, “Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature”, Angew. Chem, 2002, 114, 2511
    [22] C.G. Founstad, R.H. Rediker, “Electrical Properties of High‐Quality Stannic Oxide Crystals”, J. Appl. Phys. Lett, 1971, 42, 2911
    [23] M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts”, J. Phys. Chem. B, 2003, 107, 659
    [24] Q. Wan, T.H. Wang, “Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application”, Chem. Commun (Cambridge), 2005, 3841
    [25] X.Y. Xue, Y.J. Chen, Y.G. Liu, S.L. Shi, Y.G. Wang, T.H. Wang, “Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires”, Appl. Phys. Lett, 2006, 88, 201907
    [26] Y.H. Lin, M.W. Huang, C.K. Liu, J.R. Chen, J.M. Wu, H.C. Shih, “The Preparation and High Photon-Sensing Properties of Fluorinated Tin Dioxide Nanowires”, J. Electrochem. Soc, 2009, 156, 196
    [27] Q. Wan, E. Dattoli, W. Lu, “Doping-Dependent Electrical Characteristics of SnO2 Nanowires”, Small, 2008, 4, 451
    [28] C.C. Wang, “Nanostructures of Al2O3 and TiO2 prepared by template method and their optical properties”
    [29] H.J. Fan, M. Kmez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Gösele, “Monocrystalline spinel nanotube fabrication based on the Kirkendall effect”, nature materials, 2006, Vol. 5
    [30] 范成至, “以二氧化錫為氣體感測材料之特性探討”, 碩士論文,國立交通大學, 1994

    [31] Y.H. Lin, C.C. Kuo, J.M. Wu, U.S. Chen, Y.C. Chang, H.C. Shih, “Characterization and Cathodoluminescence of Beak-Like SnO2 Nanorods”, Jpn. J. Appl. Phys, 2008, 47, 8141
    [32] Y.H. Lin, C.C. Kuo, U.S. Chen, J.M. Wu, Y.S. Chang, H.C. Shih, “Structural and Cathodoluminescence of Sb-Doped SnO2 Nanostructures”, J. Nanosci. Nanotechnol, 2010, 10, 2336
    [33] http://www.veeco.com/learning/learning_vaporelement,asp
    [34] M.K. Wu, “The Optical Properties of Zinc Oxide Grown by Atomic Layer Deposition”, 碩士論文, 國立台灣大學, 2007
    [35] Z.R. Dai, Z.W. Pan, Z.L. Wang, “Nanobelts of Semiconducting Oxides”, Adv. Mater, 2003, 13, 9
    [36] S.P. Chiu, H.F. Chung, Y.H. Lin, J.J. Kai, F.R. Chen, J.J. Lin, “Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K”, Nanotechnology, 2009, 20, 105203
    [37] C. H. Lin, T. T. Chen, Y. F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration”, Opt. Express, 2008, 16, 16916
    [38] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, “Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material”, Science, 1997, 276, 1395
    [39] Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, and J.H. Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity”, Nanotechnology, 2008, 19, 095508
    [40] Q. Kuang, C.S. Lao, Z. Li, Y.Z. Liu, Z.X. Xie, L.S. Zheng, and Z.L. Wang, “Enhancing the Photon- and Gas-Sensing Properties of a Single SnO2 Nanowire Based Nanodevice by Nanoparticle Surface Functionalization”, J. Phys. Chem. C, 2008, Vol. 112, 30
    [41] C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke and S.J. Chua, “Photoluminescent properties of copper-doped zinc oxide nanowires”, Nanotechnology, 2004, 15, 856
    [42] J. Schrier, D.O. Demchenko, and L.W. Wang, “Optical Properties of ZnO/ZnTe Heterostructures for Photovoltaic Applications”, Nano Lett, 2007, Vol. 7, No. 8
    [43] S.W. Choi, J.Y. Park, and S.S. Kim, “Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties”, Nanotechnology, 2009, 20, 465603

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE