研究生: |
翁奕薰 Yi-Hsun Wong |
---|---|
論文名稱: |
低分子量硫酸軟骨素A 及C 型對介白素1β 所誘導之人類軟骨細胞基因表現的影響 Effects of Low Molecular Weight Chondroitin Sulfate A- type and C- type on IL-1β –induced Gene Expression in Human Chondrocytes |
指導教授: |
林立元
Lih-Yuan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 軟骨細胞 、硫酸軟骨素 、介白素1 、即時偵測聚合酶鍊鎖反應 |
外文關鍵詞: | chondrocyte, chondroitin sulfate, IL-1, real-time PCR |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究中,我們以人類軟骨細胞來探討LMW-CS或IL-1β對基因的影響。我們以及時偵測聚合酵素鏈鎖反應觀察到,IL-1β可誘導MMP1、ADAMTS5、COL2A1、AGC1、COX1、COX2基因的增加,抑制 COL1A2基因表現,但是在顯微鏡觀察下,細胞呈肥大或紡綞狀,此時細胞最終應該是降低第二類型膠原蛋白和蛋白聚糖的分泌;若合併LMW-CS處理細胞,雖然顯微鏡下觀察到LMW-CS並無法制止IL-1β所造的細胞肥大狀況,但是我們以及時偵測聚合酵素鏈鎖反應觀察到LMW-CSA可以抑制IL-1β所誘導的MMP1、ADAMTS5基因的表現,而LMW-CSC並無此現象。雖然以LMW-CSA處理細胞亦可降低MMP1基因表現,然而我們以西方點墨法分析後發現,LMW-CSA並非透過抑制p-ERK1/2而達到MMP1基因表現量的降低;我們也將IL-1β合併Intact-CSA處理細胞,在聚合酵素鏈鎖反應卻無法觀察到Intact-CSA抑制IL-1β誘導的MMP1、ADAMTS5。由以上實驗了解LMW-CSA能抑制背景值和IL-β誘導的MMP1基因表現,並非透過抑制P-ERK1/2的量所達到,而Intact-CSA不能抑制背景值和IL-β誘導的MMP1基因表現。
Abstract
In this study, we investigate the role of LMW-CSA, LMW-CSC or IL-1□-mediated gene expression in cultured human articular chondrocytes. We analyzed IL-1□-mediated gene expression by quantitative real-time polymerase chain reaction (Q-PCR), MMP1, ADAMTS5, COL2A1, AGC1, COX1, and COX2 were induced, but COL1A2 were down-regulated by IL-1□ treatment. We also observed a morphological change after treating with IL-1□. However, this morphological change of IL-1□□exposed cannot be recovered in the present of LMW-CSA or LMW-CSC. As analyzed by Q-PCR the IL-1□-induced MMP1 and ADAMTS5 gene levels can be administration of LMW-CSA, but not LMW-CSC. Althout LMW-CSA reduce IL-1□-mediated or basal level of MMP1 gene expression by Q-PCR, these inhibitory effect are not acted through p-ERK1/2 pathway. We also investigate whether Intact-CSA is able to reduce IL-1□-mediated MMP1 and ADAMTS5 gene expressions. The result showed that Intact-CSA could not inhibit IL-1□-induced MMP1 and ADAMTS5 gene level.
參考文獻
Agrati, A. M., De, B. G., and Palmieri, G. (1992). Heparan sulfate: its kinetic effects on fibrinolytic-coagulative parameters after oral administration. Minerva Med, 83, 533-536.
Akarca, U. S. (2005). Gastrointestinal effects of selective and non-selective non-steroidal anti-inflammatory drugs. Curr Pharm Des, 11, 1779-1793.
Amin, A. R., and Abramson, S. B. (1998). The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol, 10, 263-268.
Andrew, A., Brief, M. D., Stephen, G., Maurer, M. D., Paul, E., and Di Cesare, M. D. (2001). Use of Glucosamine and Chondroitin Sulfate in the Management of Osteoarthritis. J Am Acad Orthop Surg, 9, 71-78.
Arner, E. C. (1994). Effect of animal age and chronicity of interleukin-1 exposure on cartilage proteoglycan depletion in vivo. J Orthop Res, 12, 321-330.
Badger, A. M., Cook, M. N., Swift, B. A., Newman-Tarr, T. M., Gowen, M., and Lark, M. (1999). Inhibition of interleukin-1-induced proteoglycan degradation and nitric oxide production in bovine articular cartilage/chondrocyte cultures by the natural product, hymenialdisine. Pharmacol Exp Ther , 290, 587-593.
Barchowsky, A., Frleta, D., and Vincenti, M. P. (2000). Integration of the NF-kappaB and mitogen-activated protein kinase/AP-1 pathways at the collagenase-1 promoter: divergence of IL-1 and TNF-dependent signal transduction in rabbit primary synovial fibroblasts. Cytokine, 12, 1469-1479.
Bayne, E. K., MacNaul, K. L., Donatelli, S. A., Christen, A., Griffin, P. R., Hoerrner, L. A., Calaycay, J. R., Ayala, J. M., Chapman, K., and Hagmann, W., et al. (1995). Use of an antibody against the matrix metalloproteinase-generated aggrecan neoepitope FVDIPEN-COOH to assess the effects of stromelysin in a rabbit model of cartilage degradation. Arthritis & Rheumatism, 38, 1400-1409.
Becker, J. W., Marcy, A. I., Rokosz, L. L., Axel, M. G., Burbaum, J. J., Fitzgerald, P. M., Cameron, P. M., Esser, C. K., Hagmann, W. K., and Hermes, J., et al. (1995). Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci, 4, 1966-1976.
Beekman, B., Verzijl, N., Roos, J. A., and TeKoppele, J. M. (1998). Matrix degradation by chondrocytes cultured in alginate: IL-1 beta induces proteoglycan degradation and proMMP synthesis but does not result in collagen degradation. Osteoarthritis and Cartilage , 6, 330-340.
Benya, P. D., Padilla, S. R., and Nimni, M. E. (1977). The progeny of rabbit articular chondrocytes synthesize collagen types I and III and type I trimer, but not type II. Verifications by cyanogen bromide peptide analysis. Biochemistry, 16, 865-872.
Benya, P. D., Padilla, S. R., and Nimni, M. E. (1978). Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell, 15, 1313-1321.
Billinghurst, R. C., Wu, W., Ionescu, M., Reiner, A., Dahlberg, L., Chen, J., Wart, H., and Poole, A. R. (2000). Comparison of the degradation of type II collagen and proteoglycan in nasal and articular cartilages induced by interleukin-1 and the selective inhibition of type II collagen cleavage by collagenase. Arthritis Rheum , 43, 664-672.
Bohne, W. (1969). Glukosamine in der konservativen Arthrosebehandlung. Med Welt , 30, 1668-1671.
Bondeson, J., Brennan, F., Foxwell, B., and Feldmann, M. (2000). Effective adenoviral transfer of IkappaBalpha into human fibroblasts and chondrosarcoma cells reveals that the induction of matrix metalloproteinases and proinflammatory cytokines is nuclear factor-kappaB dependent. J Rheumatol , 27, 2078-2089.
Borden, P., and Heller, R. A. (1997). Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases. Crit Rev Eukaryot Gene Expr, 7, 159-178.
Bourgeois, P., Chales, G., Kuntz, J. L., and Rozenberg, S. (1998). Efficacy and tolerability of chondroitin sulfate 1200 mg/day vs chondroitin sulfate 3 x 400 mg/day vs placebo. Osteoarthritis and Cartilage , 6, 25-30.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254.
Buttner, F. H., Chubinskaya, S., Margerie, D., Huch, K., Flechtenmacher, J., Cole, A. A., Kuettner, K. E., and Bartnik, E. (1997). Expression of membrane type 1 matrix metalloproteinase in human articular cartilage. Arthritis Rheum , 40, 704-709.
Buttner, F. H., Hughes, C. E., Margerie, D., Lichte, A., Tschesche , H., Caterson, B., and Bartnik, E. (1998). Membrane type 1 matrix metalloproteinase (MT1-MMP) cleaves the recombinant aggrecan substrate rAgg1mut at the 'aggrecanase' and the MMP sites. Characterization of MT1-MMP catabolic activities on the interglobular domain of aggrecan. Biochem J, 333, 159-165.
Cancedda, R., Descalzi Cancedda, F., and Castagnola, P. (1995). Chondrocyte differentiation. Int Rev Cytol , 157, 265-358.
Caron, J. P., Fernandes, J. C., Martel-Pelletier, J., Tardif, G., Mineau, F., Geng, C., and Pelletier, J. P. (1996). Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression. Arthritis Rheum , 39, 1535-1544.
Cawston, T., E, Curry, V. A., Summers, C. A., Clark, I. M., Riley, G. P., Life, P. F., Spaull, J. R., Goldring, M. B., Koshy, P. J., Rowan, A. D., and Shingleton, W. D. (1998). The role of oncostatin M in animal and human connective tissue collagen turnover and its localization within the rheumatoid joint. Arthritis & Rheumatism, 41, 1760-1771.
Cho, S. Y., Sim, J. S., Chang, S. Y., Choi, D. W., Toida, T., and Kim, Y. S. (2004). Effects of Low Molecular Weight Chondroitin Sulfate on Type II Collagen-Induced Arthritis in DBA/1J Mice. Biol Pharm Bull , 27, 47-51.
Chou, M. M., Vergnolle, N., Jason, J. M., John, L. W., Marty, S., Teskey, V., and Andre G. B (2005). Effects of Chondroitin and Glucosamine Sulfate in a Dietary Bar Formulation on Inflammation, Interleukin-1s, Matrix Metalloprotease-9, and Cartilage Damage in Arthritis. Exp Biol Med , 230, 255-262.
Chubinskaya, S., Kuettner, K. E., and Cole, A. A. (1999). Expression of matrix metalloproteinases in normal and damaged articular cartilage from human knee and ankle joints. Lab Invest , 79, 1669-1677.
Davies, N. M., and Jamali, F. (2004). COX-2 selective inhibitors cardiac toxicity: getting to the heart of the matter. J Pharm Pharm Sci, 7, 332-336.
Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103, 239-252.
Dawes, J., Hodson, B. A., and Pepper, D. S. (1989). The absorption, clearance and metabolic fate of dermatan sulphate administered to man--studies using a radioiodinated derivative. Thromb Haemost, 62, 945-949.
Dean, D. D., Azzo, W., Martel-Pelletier, J., Pelletier, J. P., and Woessner, J. F. (1987). Levels of metalloproteases and tissue inhibitor of metallopro-teases in human osteoarthritic cartilage. J Rheumatol, 14, 43-44.
Elliott, S. F., Coon, C. I., Hays, E., Stadheim, T. A., and Vincenti, M. P. (2002). Bcl-3 is an interleukin-1-responsive gene in chondrocytes and synovial fibroblasts that activates transcription of the matrix metalloproteinase 1 gene. Arthritis & Rheumatism, 46, 3230-3239.
Felson, D. T., and Zhang, Y. (1998). An update on the epidemiology of knee and hip osteroarthritis with a view to prevention. Arthritis & Rheumatism , 41, 1343-1355.
Fernandes, J. C., Martel-Pelletier, J., Lascau-Coman, V., Moldovan, F., Jovanovic, D., and Raynauld, J. P. (1998). Collagenase-1 and collagenase-3 synthesis in early experimental osteoarthritic canine cartilage: an immunohistochemical study. J Rheumatol , 25, 1585-1594.
Firestein, G. S., Paine, M. M., and Littman, B. H. (1991). Gene expression (collagenase, tissue inhibitor of metalloproteinases, complement, and HLA-DR) in rheumatoid arthritis and osteoarthritis synovium. Quantitative analysis and effect of intraarticular corticosteroids. Arthritis & Rheumatism 34, 1094-1105.
Flannery, C. R., Lark, M. W., and Sandy, J. D. (1992). Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan. Evidence for proteolysis at this site in vivo in human articular cartilage. J Biol Chem , 267, 1008-1014.
Flannery, C. R., Little, C. B., Caterson, B., and Hughes, C. E. (1999).
Effects of culture conditions and exposure to catabolic stimulators (IL-1 and retinoic acid) on the expression of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs) by articular cartilage chondrocytes. Matrix Biol, 18, 225-237.
Fosang, A. J., Last, K., and Maciewicz, R. A. (1996). Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent. J Clin Invest, 98, 2292-2299.
Gajraj, N. M., and Joshi, G. P. (2005). Role of cyclooxygenase-2 inhibitors in postoperative pain management. Anesthesiol Clin North America, 23, 49-72.
Garrington, T. P., and Johnson, G. L. (1999). Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol, 11, 211-218.
Gentle, A., Anastasopoulos, F., and McBrien, N. A. (2001). High-resolution semi-quantitative real-time PCR without the use of a standard curve. Biotechniques, 31, 504-508.
Gregory, S., and Kelly, N. D. (1998). The Role of Glucosamine Sulfate and Chondroitin Sulfates in the Treatment of Degenerative Joint Disease. Alt Med Rev , 3, 27-39.
Gross, J., and Lapiere, C. M. (1962). Collagenolytic activity in amphibian tissues: a tissue culture assay. PNAS, 15, 1014-1022.
Gruber, J., Vincent , T. L., Hermansson, M., Bolton, M., Wait, M., and Saklatvala, J. (2004). Induction of interleukin-1 in articular cartilage by explantation and cutting. Arthritis & Rheumatism, 50, 2539-2546.
Harris, R. (2005). Renal effects of non-steroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors. Curr Pharm Des, 11, 1795-1804.
Heraud, F., Heraud, A., and Harmand, M. F. (2000). Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis, 59, 959-965.
Imanari, T., Washio, Y., Huang , Y., Toyoda, H., Suzuki, A., and Toida, T. (1999). Oral absorption and clearance of partially depolymerized fucosyl chondroitin sulfate from sea cucumber. Thromb Res, 93, 129-135.
Janknecht, R., Ernst, W. H., and Nordheim, A. (1995). SAP1a is a nuclear target of signaling cascades involving ERKs. Oncogene, 10, 1209-1216.
Jouzeau, J. Y., Pacquelet, S., Boileau, C., Nedelec, E., Presle, N., Netter, P., and Terlain, B. (2002). Nitric oxide (NO) and cartilage metabolism: NO effects are modulated by superoxide in response to IL-1. Biorheology , 39, 201-214.
Kafienah, W., Buttle, D. J., Burnett, D., and Hollander, A. P. (1998). Cleavage of native type I collagen by human neutrophil elastase. Biochem J, 330, 897-902.
Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem , 270, 16483-16486.
Lakka, S. S., Gondi, C. S., Dinh, D. H., Olivero, W. C., Gujrati, M., Rao, V. H., Sioka, C., and Rao, J. S. (2005). Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J Biol Chem , 280, 21882-21892.
Lane, N. E., and Thompson, J. M. (1997). Management of osteoarthritis in the primary-care setting. Am J Med , 103, 25-30.
Lang, A., Horler, D., and Baici, A. (2000). The relative importance of cysteine peptidases in osteoarthritis. J Rheumatology , 27, 1970-1979.
Lark, M. W., Bayne, E. K., Flanagan, J., Harper, C. F., Hoerrner, L. A., Hutchinson, N. I., Singer, I. I., Donatelli, S. A., Weidner, J. R., Williams, H. R., et al. (1997). Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest, 100, 93-106.
Larsen, A. K., Lund, D. P., Langer, R., and Folkman, J. (1986). Oral heparin results in the appearance of heparin fragments in the plasma of rats. Proc Natl Acad Sci USA , 83, 2964-2968.
Lauer-Fields, J. L., Juska, D., and Fields, G. B. (2002). Matrix metalloproteinases and collagen catabolism. Biopolymers , 66, 19-32.
Lawrence, R. C., Hochberg, M. C., Kelsey, J., McDuffie, F. C., Medsger, T. A., Felts, W. R., and Shulman, L. E. (1989). Estimates of the prevalence of selected arthritic and musculoskeletal diseases in the United States. J Rheumatol, 16, 427-441.
Lecaille, F., Kaleta, J., and Bromme, D. (2002). Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev, 102, 4459-4488.
Li, Z., Hou, W. S., Carlos, R., Torres, E., Gelb, B. D., and Bromme, D. (2002). Collagenase Activity of Cathepsin K Depends on Complex Formation with Chondroitin Sulfate. J Biol Chem , 277, 28669-28676.
Li, Z., Yasuda, Y., Li, w., Bogyo, M., Katz, N., Ronald, E. G., Gregg, B. F., and Dieter, B. M. (2004). Regulation of Collagenase Activities of Human Cathepsins
by Glycosaminoglycans. J Biol Chem , 279, 5470-5479.
Lindblad, M., Lagergren, J., Luis, A., and Rodriguez, G. (2005). Nonsteroidal Anti-inflammatory Drugs and Risk of Esophageal and Gastric Cancer. Cancer Epidemiol Biomarkers Prev, 14, 444-450.
Little, C. B., Hughes, C. E., Curtis, C. L., Janusz , M. J., Bohne, R., Wang-Weigand, S., Taiwo, Y. O., Mitchell , P. G., Otterness, I. G., Flannery, C. R., and Caterson, B. (2002a). Matrix metalloproteinases are involved in C-terminal and interglobular domain processing of cartilage aggrecan in late stage cartilage degradation. Matrix Biol, 21, 271-288.
Little, C. B., Hughes, C. E., Curtis, C. L., Jones, S. A., Caterson, B., and Flannery, C. R. (2002b). Cyclosporin A inhibition of aggrecanase-mediated proteoglycan catabolism in articular cartilage. Arthritis & Rheumatism, 46, 124-129.
Lohmander, L. S., Ionescu, M., Jugessur, H., and Poole, A. R. (1999). Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum, 42, 534-544.
Lohmander, L. S., Neame, P. J., and Sandy, J. D. (1993a). The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis & Rheumatism, 36, 1214-1222.
Lohmander, L. S., Neame, P. J., and Sandy, J. D. (1993b). The structure of aggrecan frangment in human synovial fluid. Evidence that aggrecanase mediates cartilage degradationin inflammatory joint disease,joint injury, and osteoarthritis. Arthritis & Rheumatism, 36, 1214-1222.
Malinen, E., Kassinen, A., Rinttila, T., and Palva, A. (2003). Comparison of real-time PCR with SYBR Green I or 5'-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology, 149, 269-277.
Mark, K., Gauss, V., Mark, H., and Muller, P. (1977). Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature, 267, 531-532.
Martel-Pelletier, J., Cloutier, J. M., and Pelletier, J. P. (1986). Neutral proteases in human osteoarthritic (OA) synovium. Arthritis Rheum, 26, 1112-1121.
Martel-Pelletier, J., Pelletier, J. P., Cloutier, J. M., Howell, D. S., Ghandur-Mnaymneh, L., and Woessner, J. F. (1984). Neutral proteases capable of proteoglycan digesting activity in osteoarthritic and normal human articular cartilage. Arthritis Rheum, 27, 305-312.
McCarty, M. F., and Russell, A. L. (1999). Niacinamide therapy for osteoarthritis: does it inhibit nitric oxide synthase induction by interleukin 1 in chondrocytes? Med Hypotheses, 53, 350-360.
Mengshol, J. A., Vincenti, M. P., Coon, C. I., Barchowsky, A., and Brinckerhoff, C. E. (2000). Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis & Rheumatism, 43, 801-811.
Mitchell, P. G., Magna, H. A., Reeves, L. M., Lopresti-Morrow, L. L., Yocum, S. A., Rosner, P. J., Geoghegan, K. F., and Hambor, J. E. (1996). Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest, 97, 761-768.
Miwa, I., Mita, Y., Murata, T., Okuda, J., Sugiura, M., Hamada, Y., and T, C. (1994). Utility of 3-O-methyl-N-acetyl-D-glucosamine, an N-acetylglucosamine kinase
inhibitor, for accurate assay of glucokinase in pancreatic islets and liver. Enzyme Protein, 48, 135-142.
Mix, K. S., Mengshol, J. A., Benbow, U., Vincenti, M. P., Sporn, M. B., and Brinckerhoff, C. E. (2001). A synthetic triterpenoid selectively inhibits the induction of matrix metalloproteinases 1 and 13 by inflammatory cytokines. Arthritis & Rheumatism 44, 1096-1104.
Moldovan, F., Pelletier, J. P., Hambor, J., Cloutier, J. M., and Martel-Pelletier, J. (1997). Collagenase-3 (matrix metalloprotease 13) is preferentially localized in the deep layer of human arthritic cartilage in situ: in vitro mimicking effect by transforming growth factor beta. Arthritis & Rheumatism, 40, 1653-1661.
Muller, P. K., Lemmen, C., Gay , S., Gauss, V., and Kuhn, K. (1977). Immunochemical and biochemical study of collagen synthesis by chondrocytes in culture. Exp Cell Res , 108, 47-55.
Nagase, H., Suzuki, K., Enghild, J. J., and Salvesen, G. (1991). Stepwise activation mechanisms of the precursors of matrix metalloproteinases 1 (tissue collagenase) and 3 (stromelysin). Biochem Biophys Acta, 50, 749-754.
Nerucci, F., Fioravanti, A., Cicero, M. R., Collodel, G., and Marcolongo, R. (2000). Effects of chondroitin sulfate and interleukin-1s on human chondrocyte cultures exposedto pressurization: a biochemical and morphologicalstudy. Osteoarthritis and Cartilage, 8, 279-287.
Omata, T. (2000). Effects of Chondroitin Sulfate-C on Articular Cartilage Destruction in Murine Collagen-induced Arthritis. Arzneimittel-Forschung, 50, 148-153.
Pan, L., Eckhoff, C., and Brinckerhoff, C. E. (1995). Suppression of collagenase gene expression by all-trans and 9-cis retinoic acid is ligand dependent and requires both RARs and RXRs. J Cell Biochem, 57, 575-589.
Patwari, P., Kurz, B., Sandy, J. D., and Grodzinsky, A. J. (2000). Mannosamine inhibits aggrecanase-mediated changes in the physical properties and biochemical composition of articular cartilage. Arch Biochem Biophys, 374, 79-85.
Pelletier, J. P., Fernandes, J. C., Brunet, J., Moldovan, F., Schrier, J., Flory, C., and Pelletier, J. M. (2003). In Vivo Selective Inhibition of Mitogen-Activated Protein Kinase Kinase 1/2 in Rabbit Experimental Osteoarthritis Is Associated With a Reduction in the Development of Structural Changes. Arthritis & Rheumatism, 48, 1582-1593.
Pelletier, J. P., Martel-Pelletier, J., Altman, R. D., Ghandur-Mnaymneh, L., Howell, D. S., and Woessner, J. F. (1983a). Collagenolytic activity and collagen matrix breakdown of the articular cartilage in the Pond-Nuki dog model of osteoarthritis. Arthritis & Rheumatism , 26, 866-874.
Pelletier, J. P., Martel-Pelletier, J., Altman, R. D., Ghandur-Mnaymneh, L., Howell, D. S., and Woessner, J. F. (1985). Cartilage degradation by neutral proteoglycanases in experimental osteoarthritis. Suppression by steroids. Arthritis & Rheumatism, 28, 1393-1401.
Pelletier, J. P., Martel-Pelletier, J., Cloutier, J. M., and Woessner, J. F. (1987). Proteoglycan-degrading acid metalloprotease activity in human osteoarthritic cartilage, and the effect of intraarticular steroid injections. Arthritis & Rheumatism, 30, 541-548.
Pelletier, J. P., Martel-Pelletier, J., Howell, D. S., Ghandur-Mnaymneh, L., Enis, J. E., and Woessner, J. F. (1983b). Collagenase and collagenolytic activity in human osteoarthritic cartilage. Arthritis & Rheumatism, 26, 63-68.
Pettipher, E. R., Higgs, G. A., and Henderson, B. (1986). Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. PNAS, 83, 8749-8753.
Pfaffl, M. W. (2001). A new mahmatical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29, e45.
Pillinger, M. H., Rosenthal, P. B., Tolani, S. N., Apsel, B., Dinsell, V., Greenberg, J., Chan, E. S. L., Gomez, P. F., and Abramson, S. B. (2003). Cyclooxygenase-2-Derived E Prostaglandins Down-Regulate Matrix Metalloproteinase-1 Expression in Fibroblast-Like Synoviocytes via Inhibition of Extracellular Signal-Regulated Kinase Activation1. J Immunology, 171, 6080-6089.
Pipitone, V. R. (1991). Chondroprotection with chondroitin sulfate. Drugs Exp Clin Res, 17, 3-7.
Quarto, R., Dozin, B., Bonaldo, P., Cancedda, R., and Colombatti, A. (1993). Type VI collagen expression is upregulated in the early events of chondrocyte differentiation. Development, 117, 245-251.
Ramos-DeSimone, N., Hahn-Dantona, E., Sipley, J., Nagase, H., French, D. L., and Quigley, J. P. (1999). Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem , 274, 13066-13076.
Reichenberger, E., Aigner, T., von der Mark, K., Stob, H., and Bertling, W. (1991). In situ hybridization studies on the expression of type X collagen in fetal human cartilage. Dev Biology , 148, 1-11.
Saase, J., Romunde, L. K., Cats, A., Vandenbroucke, J. P., and Valkenburg, H. A. (1989). Epidemiology of osteoarthritis: Zoetermeer survey. Comparison of radiological osteoarthritis in a Dutch population with that in 10 other populations. Ann Rheum Dis, 48, 271-280.
Sandberg, M., and Vuorio, E. (1987). Localization of types I, II, and III collagen in RNAs in developing human skeletal tissues by in situ hybridization. J Cell Biol , 104, 1077-1084.
Sandell, L. J., Morris, N., Robbins, J. R., and Goldring, M. R. (1991). Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: differential expression of the amino-propeptide. J Cell Biol , 114, 1307-1319.
Sandy, J. D., Flannery, C. R., Neame, P. J., and Lohmander, L. S. (1992). The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest, 89, 1512-1516.
Schmid, T. M., and Linsenmaher, T. F. (1985). Developmental acquisition of Type X collagen in the embryonic chick tibiotarsus. Dev Biol , 107, 373-381.
Schroen, D. J., and Brinckerhoff, C. E. (1996a). Inhibition of rabbit collagenase (matrix metalloproteinase-1; MMP-1) transcription by retinoid receptors: evidence for binding of RARs/RXRs to the -77 AP-1 site through interactions with c-Jun. J Cell Physiol, 169, 320-332.
Schroen, D. J., and Brinckerhoff, C. E. (1996b). Nuclear hormone receptors inhibit matrix metalloproteinase (MMP) gene expression through diverse mechanisms. Gene Expr , 6, 197-207.
Schuerwegh, A. J., Dombrecht, E. J., Stevens, W. J., Van Offel, J. F., Bridts, C. H., and De Clerck, L. S. (2003). Influence of pro-inflammatory (IL-1 alpha, IL-6, TNF-alpha, IFN-gamma) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthritis and Cartilage, 11, 681-687.
Schule, R., Rangarajan, P., Yang, N., Kliewer, S., Ransone, L. J., Bolado, J., Verma, I. M., and Evans, R. M. (1991). Retinoic acid is a negative regulator of AP-1-responsive genes. PNAS, 88, 6092-6096.
Scott, J. E., Bosworth, T. R., Cribb, A. M., and Taylor, J. R. (1994). The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus. J Anat, 184, 73-82.
Setnikar, I., Cereda, R., Pacini, M. L., and Revel, L. (1991). Antireactive properties of glucosamine sulfate. Arzneim-Forsch/Drug Res, 41, 157-161.
Shikhman, A. R., Kuhn, K., Alaaeddine, N., and Lotz, M. (2001). N-Acetylglucosamine Prevents IL-1b-Mediated Activation of Human Chondrocytes1. J Immunology, 166, 5155-5160.
Shlopov, B. V., Lie, W. R., Mainardi, C. L., Cole, A. A., Chubinskaya, S., and Hasty, K. A. (1997). Osteoarthritic lesions: involvement of three different collagenases. Arthritis & Rheumatism 40, 2056-2074.
Singer, I. I., Scott, S., Kawka, D. W., Bayne, E. K., Weidner, J. R., Williams, H. R., Mumford , R. A., Lark, M. W., McDonnell, J., Christen, A. J., et al. (1997). Aggrecanase and metalloproteinase-specific aggrecan neo-epitopes are induced in the articular cartilage of mice with collagen II-induced arthritis. Osteoarthritis and Cartilage, 5, 407-418.
Smalley, W. E., Ray, W. A., Daugherty, J. R., and Griffin, M. P. (1995). Nonsteroidal anti-inflammatory drugs and the incidence of hospitalizations of peptic ulcer disease inelderly persons. Am J Epidemiol, 141, 539-545.
Sowers, J. R., White, W. B., Pitt, B., Whelton, A., Simon, L. S., Winer, N., Kivitz, A., Brabant, T., and Fort, J. G. (2005). The Effects of cyclooxygenase-2 inhibitors and nonsteroidal anti-inflammatory therapy on 24-hour blood pressure in patients with hypertension, osteoarthritis, and type 2 diabetes mellitus. Arch Intern Med, 165, 161-168.
Stracke, J. O., Fosang, A. J., Last, K., Mercuri, F. A., Pendas, A. M., Llano, E., Perris, R., Di, C., P.E, , Murphy, G., and Knauper, V. (2000). Matrix metalloproteinases 19 and 20 cleave aggrecan and cartilage oligomeric matrix protein (COMP). FEBS, 478, 52-56.
Sztrolovics, R., Alini, M., Roughley, P. J., and Mort, J. S. (1997). Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J, 326, 235-241.
Tamblyn, R., Berkson, L., and Dauphinee, W. D. (1997). Un-necessary prescribing of NSAIDs and management of NSAID-relatedgastropaathy in medical practice. Ann Intern Med, 127, 429-438.
Tetlow, L. C., Adlam, D. J., and Woolley, D. E. (2001). Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis & Rheumatism, 44, 585-594.
Thomas, D. P., King, B., Stephens, T., and Dingle, J. T. (1991). In vivo studies of cartilage regeneration after damage induced by catabolin/interleukin-1. Ann Rheum Dis, 50, 75-80.
Tortorella, M. D., Liu, R. Q., Burn, T., Newton, R. C., and Arner, E. (2002). Characterization of human aggrecanase 2 (ADAMTS-5): substrate specifity studies and comparison with aggrecanase 1 (ADAMTS-4). Matrix Biol, 21, 499-511.
Tortorella, M. D., Pratta, M., Liu, R. Q., Abbaszade, I., Ross, H., Burn, T., and Arner, E. (2000). The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage. J Biol Chem, 275, 25791-25797.
van Meurs, J., van Lent, P., Stoop, R., Holthuysen, A., Singer, I., Bayne, E., Mudgett, J., Poole, R., Billinghurst, C., van der Kraan, P., et al. (1999). Cleavage of aggrecan at the Asn341-Phe342 site coincides with the initiation of collagen damage in murine antigen-induced arthritis: a pivotal role for stromelysin 1 in matrix metalloproteinase activity. Arthritis & Rheumatism, 42, 2074-2084.
Van Schaftigen, E. (1995). Glucosamine-sensitive and -insensitive detritiation of [2-3H]glucose in isolated rat hepatocytes: a study of the contributions of glucokinase and glucose-6 phosphatase. Biochem J, 308, 23-29.
Van Wart, H. E., and Birkedal-Hansen, H. (1990). The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. PNAS, 87, 5578-5582.
Vankemmelbeke. M, N., Holen, I., Wilson, A. G., Ilic, M. Z., Handley, C. J., Kelner, G. S., Clark, M., Liu, C., Maki, R. A., Burnett, D., and Buttle, D. J. (2001).
Expression and activity of ADAMTS-5 in synovium. Eur J Biochem, 268, 1259-1268.
Vincenti, M. P., Coon, C. I., and Brinckerhoff, C. E. (1998). Nuclear factor kappaB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1beta-stimulated synovial fibroblasts. Arthritis & Rheumatism, 41, 1987-1994.
Vincenti, M. P., White, L. A., Schroen, D. J., Benbow, U., and Brinckerhoff, C. E. (1996). Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev Eukaryot Gene Expr, 6, 391-411.
von der Mark, K. (1986). Differentiation, modulation and dedifferentiation of chondrocytes. Rheumatology, 10, 272-315.
Vornehm, S. I., Dudhia, J., von der Mark, K., and Aigner, T. (1996). Expression of collagen types IX and XI and other major cartilage matrix components by human fetal chondrocytes in vivo. Matrix Biol , 15, 91-98.
Wang, T., and Brown, M. J. (1999). mRNA quantification by real time TaqMan polymerase chain reaction: validation and comparison with RNase protection. Anal Biochem, 269, 198-201.
Williams, A., Oppenheimer, R. A., Gray, M. L., and Burstein, D. (2003). Differential recovery of glycosaminoglycan after IL-1-induced degradation of bovine articular cartilage depends on degree of degradation. Arthritis Res Ther, 5, 97-105.
Woessner, J. F., Pelletier, J. P., Martel-Pelletier, J., Enis, J., and Howell, D. S. (1981). Direct measurement of cartilage collagenolytic activity in human osteoarthritis. Semin Arthritis Rheum, 11, 58-59.
Wolfe, M., David, R., Lichtenstein, M. D., and Gurkirpal Singh, M. D. (1999). Gastrointestinal Toxicity of Nonsteroidal Antiinflammatory Drugs. N Engl J Med, 340, 1888-1899.
Yamanishi, Y., Boyle, D. L., Clark, M., Maki, R. A., Tortorella, M. D., Arner, E. C., and Firestein, G. S. (2002). Expression and regulation of aggrecanase in arthritis: the role of TGF-beta. J Immunology, 168, 1405-1412.
Yang-Yen, H. F., Zhang, X. K., Graupner, G., Tzukerman, M., Sakamoto, B., Karin, M., and Pfahl, M. (1991). Antagonism between retinoic acid receptors and AP-1: implications for tumor promotion and inflammation. New Biol, 3, 1206-1219.
Yasuhara, R., Miyamoto, Y., Akaike, T., Akuta, T., Nakamura, M., Takami, M., Morimura, N., Yasu, K., and Kamijo, R. (2005). Interleukin-1beta induces death in chondrocyte-like ATDC5 cells through mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen species-dependent manner. Biochem J, 389, 315-323.
Yoshihara, Y., Nakamura, H., Obata, K., Yamada, H., Hayakawa, T., Fujikawa, K., and Okada, Y. (2000). Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis, 59, 455-461.
羅景全 (2004). COX-1, COX-2, COX-3環氧化酶. 臨床醫學, 54, 448-450.