研究生: |
楊守勛 Yang, Shou-Shiun |
---|---|
論文名稱: |
探討以鈷團簇修飾的CoOx @ Pd奈米觸媒表面之局部協同作用對其二氧化碳甲烷化性能之影響 The Local Synergetic Effect of Co-Cluster-Decorated CoOx@Pd Nanocatalysts Enhances the Performances of CO2 Thermal Methanation |
指導教授: |
陳燦耀
Chen, Tsan-Yao |
口試委員: |
王冠文
Wang, Kuan-Wen 陳馨怡 Chen, hsin-yi |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 二氧化碳氫化 、表面修飾 、協同作用 、二氧化碳甲烷化 、低碳數產物 |
外文關鍵詞: | CO2 hydrogenation, Suface decoration, Synergy effect, CO2 methanation, C1 product |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來CO2透過觸媒催化轉換成燃料與化學品一直受到高度的關注,因為其產物除了能作為化石原料之替代品外,還有利於大規模的CO2轉化與封閉的碳循環利用。而本實驗設計在較低的反應溫度(573K以下)進行CO2氫化反應,為了適用於工廠排放廢熱之溫度,此外利用過度金屬作為活性金屬材料以降低觸媒成本,在探討添加金屬團簇對於材料表面修飾後局部協同作用對二氧化碳甲烷化增進之影響。
本研究利用濕式化學法合成二元金屬(鈷、鈀)尺度結構觸媒,並利用不同當量鈷團簇修飾於觸媒表面,再探究其在近室壓環境中,將CO2熱催化還原成低碳數產物(如CO, CH4)。利用X光繞射光譜(XRD),X光吸收光譜(XAS),高解析電子顯微境(TEM)等儀器分析觸媒物性結構,並由電化學循環伏安法與一氧化碳剝除法確認表面組成,與協同作用之間的關係。當有0.8wt%的鈷團簇點綴下(CoOx@PdCo0025),在573K的反應環境中CH4產量為 CoOx@Pd 的 1.95 倍,Co團簇和Pd之間形成了新的界面,形成更強協同作用,對CO2甲烷化產生影響。
In recent years, the conversion of CO2 into fuels and chemicals through catalyst catalysis has been receiving high attention, because its products can not only be used as substitutes for fossil raw materials, but also conducive to large-scale CO2 conversion and closed carbon recycling. This experiment is designed to carry out the CO2 hydrogenation reaction at a lower reaction temperature (below 573K). In order to be suitable for the temperature of the waste heat of the factory, in addition to using the transition metal as the active metal material to reduce the cost of the catalyst, we are discussing the effect of adding metal clusters to the material. The effect of local synergy after surface modification on the enhancement of carbon dioxide methanation.
This study uses wet chemical methods to synthesize binary metal (cobalt, palladium) scale structure catalysts, and uses different equivalent cobalt clusters to modify the surface of the catalyst, and then explores its thermal catalytic reduction of CO2 in a near-room pressure environment. Low carbon number products (such as CO, CH4). Use X-ray diffraction spectroscopy (XRD), X-ray absorption spectroscopy (XAS), high-resolution electron microscopy (TEM) and other instruments to analyze the physical structure of the catalyst, and confirm the surface composition by electrochemical cyclic voltammetry and carbon monoxide stripping , and the relationship between synergy. When 0.8wt% of cobalt clusters are dotted (CoOx@PdCo0025), the output of CH4 is 1.95 times that of CoOx@Pd in a reaction environment of 573K. A new interface is formed between Co clusters and Pd, forming a stronger synergistic effect on CO2 methanation has an impact.
[1] M. Liu, Y. Yi, L. Wang, H. Guo, A. Bogaerts, “Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis”, Catalysts, vol. 9, 2019, pp. 275.
[2] A. Galadima, O. Muraza, “Catalytic thermal conversion of CO2 into fuels: Perspective and challenges”, Renewable and Sustainable Energy Reviews, vol. 115, 2019, pp. 109-133.
[3] S. Das, J. Pe´rez-Ramı´rez, J. Gong, N. Dewangan, K. Hidajat, B.C. Gates, S. Kawi, “Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2”, Chemical Society Reviews, vol. 49, 2020, pp. 2937-3004.
[4] W. Wang, S. Wang, X. Ma, J. Gong, “Recent advances in catalytic hydrogenation of carbon dioxide”, Chemical Society Reviews, vol. 40, 2011, pp. 3703–3727.
[5] G. Centi, S. Perathoner, “Opportunities and prospects in the chemical recycling of carbon dioxide to fuels”, Catalysis Today,vol. 148, 2009, pp. 191–205.
[6] W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, C. Song, “A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts”, RSC Advances, vol. 8, 2018, pp. 7651-7669.
[7] R. W. Dorner, D. R. Hardy, F. W. Williams, H. D. Willauer, “ Heterogeneous catalytic CO2 conversion to value-added hydrocarbons”, Energy & Environmental Science, vol. 3, 2010, pp. 884-890.
[8] S. Samanta, R. Srivastava, “Catalytic conversion of CO2 to chemicals and fuels: the collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride”, Materials Advances, vol. 1, 2020, pp. 1506-1545.
[9] H. S. Whang, J. Lim, M. S. Choi, J. Lee, H. Lee, “Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals”, BMC Chemical Engineering, vol. 1, 2019, pp. 2-19.
[10] D.N. Kamkeng , M. Wang , J. Hu, W. Du, F. Qian, “Transformation technologies for CO2 utilisation: Current status, challenges Available and future prospects”, Chemical Engineering Journal, vol. 409, 2021, pp. 128-138.
[11] N. Podrojková, V. Sans, A. Oriňak, R. Oriňaková, “Recent Developments in the Modelling of Heterogeneous Catalysts for CO2 Conversion to Chemicals”, ChemCatChem, vol. 12, 2020, pp. 1802–1825.
[12] J. Wu, Y. Huang, W. Ye, Y. Li, “CO2 Reduction: From the Electrochemical to Photochemical Approach”, Advanced Science, vol. 4, 2017, pp. 170-194.
[13] P.J.D. Janssen, M.D. Lambreva, N. Plumer´e, C. Bartolucci, A. Antonacci, K. Buonasera, R.N. Frese, V. Scognamiglio, G. Rea, “Photosynthesis at the forefront of a sustainable life”, Frontiers in Chemistry, vol. 2, 2014, pp. 1–22.
[14] M. Mikkelsen, M. Jørgensen, F.C. Krebs, “The teraton challenge. A review of
fixation and transformation of carbon dioxide”, Energy & Environmental Science, vol. 3, 2010, pp. 43–81.
[15] K. Malik, S. Singh, S. Basu, A. Verma, “Electrochemical reduction of CO2 for synthesis of green fuel : Electrochemical reduction of CO2 for synthesis of green fuel”, WIRES Energy and Enviroment, vol. 6, 2017, pp. 244.
[16] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, “Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueousmedia”, Electrochimica Acta, vol. 39, 1994, pp. 1833–1839.
[17] R. P. Ye, J. Ding, W. Gong, M. D. Argyle, Q. Zhong, Y. Wang, C. K. Russell, Z. Xu, A. G. Russell, Q. Li, M. Fan, Y. G. Yao, “CO2 hydrogenation to high-value products via heterogeneous catalysis”, Nature Communications, vol. 10, 2019, pp. 5698- 5705.
[18] L.i. Wang, Y. Yi, H. Guo, X. Tu, “Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO2”, ACS Catalysis, vol. 8, 2018, pp. 90–100.
[19] J. Ashok, L. Falbo, S. Das, N. Dewangan, C.G. Visconti, S. Kawi, “Catalytic CO2 Conversion to Added-Value Energy Rich C1 Products”, In: M. Aresta, I.Karimi, S. Kawi, An Economy Based on Carbon Dioxide and Water, Springer, Cham., 2019.
[20] J. Kopyscinski, T. J. Schildhauer, S. M. A. Biollaz, “Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009”, Fuel, vol. 89, 2010, pp. 1763–1783.
[21] A. Mazza, E. Bompard, G. Chicco, “Applications of power to gas technologies in emerging electrical systems”, Renew Sustain Energy Reviews, vol. 92, 2018, pp. 794–806.
[22] F. D. Meylan, V. Moreau, S. Erkman, “Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation”, Energy Policy, vol. 94, 2016, pp. 366–376.
[23] Z. Bian, Y. M. Chan, Y. Yu, S. Kawi, “Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: a kinetic and mechanism study”, Catalysis Today, vol. 347, 2020, pp. 31-38.
[24] R. Mutschler, E. Moioli, W. Luo, N. Gallandat, A. Züttel, “CO2 hydrogenation reaction over pristine Fe Co, Ni, Cu and Al2O3 supported Ru: comparison and determination of the activation energies”, Journal of Catalysis, vol. 366, 2018, pp. 139–149.
[25] P. Panagiotopoulou, “Hydrogenation of CO2 over supported noble metal catalysts”, Applied Catalysis A, vol. 542, 2017, pp. 63–70.
[26] C. G. Visconti, M. Martinelli, L. Falbo, L. Fratalocchi, L. Lietti, “CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts”, Catalysis Today, vol. 277, 2016, pp. 161–170.
[27] W. Wei, G. Jinlong, “Methanation of carbon dioxide: an overview”, Frontiers of Chemical Science and Engineering, vol. 5, 2011, pp. 2–10.
[28] X. Wang, H. Shi, J. Szanyi, “Controlling selectivities in CO2 reduction through mechanistic understanding”, Nature Communications, vol, 8, 2017, pp. 513.
[29] M. Aziz, A. Jalil, S. Triwahyono, A. Ahmad, “CO2 methanation over heterogeneous catalysts: recent progress and future prospects”, Green Chemistry, vol, 17, 2015, pp. 2647–2663.
[30] J. H. Kwak, L. Kovarik, J. N. Szanyi, “Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts”, ACS Catalysis, vol. 3, 2013, pp. 2094–2100.
[31] J. Xu, Q. Lin, X. Su, H. Duan, H. Geng, Y. Huang, “CO2 methanation over TiO2–Al2O3 binary oxides supported Ru catalysts”, Chinese Journal of Chemical Engineering, vol. 24, 2016, pp. 140–145.
[32] P. Panagiotopoulou, X. E. Verykios, “Mechanistic study of the selective methanation of CO over Ru/TiO2 catalysts: effect of metal crystallite size on the nature of active surface species and reaction pathways” The Journal of Physical Chemistry C, vol. 121, 2017, pp. 5058–5068.
[33] B. Miao, S. S. K. Ma, X. Wang, H. Su, S. H. Chan, “Catalysis mechanisms of CO2 and CO methanation”, Catalysis Science & Technology, vol. 6, 2016, pp. 4048–4058.
[34] F. Solymosi, A. Erdőhelyi, “Hydrogenation of CO2 to CH4 over alumina-supported noble metals”, Journal of Molecular Catalysis, vol. 8, 1980, pp. 471–474.
[35] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, “Review on methanation—from fundamentals to current projects”, Fuel, vol. 166, 2016, pp. 276–296.
[36] R. M. Bowman, C. H. Bartholomew, “Deactivation by carbon of Ru/Al2O3 during CO hydrogenation”, Applied Catalysis, vol. 7, 1983, pp. 179–187.
[37] B. R. Dalla, A. Piken, M. Shelef, “Heterogeneous methanation: steady-state rate of CO hydrogenation on supported ruthenium, nickel and rhenium”, Journal of Catalysis, vol. 40, 1975, pp. 173–183.
[38] C. H. Bartholomew, “Mechanisms of catalyst deactivation”, Applied Catalysis A, vol. 212, 2001, pp. 17–60.
[39] J. G. Ekerdt, A. T. Bell, “Synthesis of hydrocarbons from CO and H2 over silica-supported Ru: reaction rate measurements and infrared spectra of adsorbed species”, Journal of Catalysis, vol. 58, 1979, pp. 170–187.
[40] S. Mukkavilli, C. Wittmann, L. L. Tavlarides, “Carbon deactivation of Fischer-Tropsch ruthenium catalyst”, Industrial & Engineering Chemistry Process Design and Development, vol. 25, 1986, pp. 487–494.
[41] E. L. Thomas, J. N. Millican, E. K. Okudzeto, J. Y. Chan, “Crystal Growth and the Search for Highly Correlated Ternary Intermetallic Antimonides and Stannides”, Comments on Inorganic Chemistry, vol. 27, 2006, pp. 11-14.
[42] F. A. Stevie, C. L. Donley, “Introduction to x-ray photoelectron spectroscopy”, Journal of Vacuum Science & Technology A, vol. 38, 2020, pp. 1-20.
[43] J. D. Grunwaldt, A. Baikera, “In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure”, Physical Chemistry Chemical Physics, vol. 7, 2005, pp. 3526-3539.
[44] J. E. Penner-Hahn, X-ray Absorption Spectroscopy, Wiley Online Library, Michigan, 2005.
[45] A. L. Ong, K. K. Inglis, D. K. Whelligan, S. Murphy, J. R. Varcoe, “Effect of cationic molecules on the oxygen reduction reaction on fuel cell grade Pt/C (20 wt%) catalyst in potassium hydroxide (aq, 1 mol dm-3)”, Physical Chemistry Chemical Physics, vol. 17, 2015, pp. 12135-12145.
[46] F. Saidani, D. Rochefort, M. Mohamedi, “CarbonMonoxide Oxidation on Nanostructured Pt Thin Films Synthesized by Pulsed Laser Deposition: Insights into the Morphology Effects”, Laser Chemistry, vol. 2010, 2010, pp. 1-7.