簡易檢索 / 詳目顯示

研究生: 曾威鈞
Wei-jyun Ceng
論文名稱: Air-Gap銅導線結構的製程整合和漏電流傳導機制
Process Integration and Leakage Current of Air-Gap Cu Interconnect Structures
指導教授: 葉鳳生
Fon-Shan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 67
中文關鍵詞: 鑲嵌結構銅導線air-gap漏電流傳導機制製程整合
外文關鍵詞: air-gap, damascene structure, integration, leakake current, cu
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目的在於研究銅、擴散阻障層TaSix和TaN與犧牲層的製程整合,配合damascene技術,製作Cu/TaSix or TaN/SiO2 air-gap damascene平行導線結構,探討其漏電流機制。
    在犧牲層(sacrificial layer)方面,以旋轉塗佈的方式將調配不同稀釋比例的HSQ(hydrogen silsesquioxane,precursor : Fox15)和MIBK塗佈在晶圓上,來得到所需的膜厚。在預烤350℃時,HSQ可承受CMP的研磨且浸泡在BOE溶液內可快速被去除,為一個良好的犧牲層。
    擴散阻障層(TaSix、TaN)方面,以濺鍍方式沉積之TaSix薄膜,經由歐傑電子顯微鏡之縱深分佈圖得知其原子組成比例約為Si/Ta=0.52。
    將犧牲層HSQ、擴散阻障層TaSix、TaN和有電極電鍍銅配合化學機械研磨製程完成Cu/TaSix or TaN/SiO2 air-gap damascene平行導線結構,量測其導線與導線間之漏電流。Cu/TaN(200Å)/SiO2 air-gap damascene structures的崩潰電壓為0.94~1.1 MV/cm,崩潰前漏電流大小為1.02×10-4~2.27×10-4 A/cm2;Cu/TaSix(200Å)/SiO2 air-gap damascene structures的崩潰電壓為0.73 MV/cm,崩潰前漏電流大小為5.9×10-6 A/cm2;Cu/TaSix(100Å)/SiO2 air-gap damascene structures的崩潰電壓為大於1.3 MV/cm,崩潰前漏電流大小為6.6×10-4~2.89×10-3 A/cm2。在漏電流傳導機制方面,我們將漏電流量測結果,由J v.s. V2之作圖發現可以分成兩類:一為當電壓上升至某個電壓時,漏電流密度(J)與V2成線性關係;另一為在電壓為0V時,漏電流密度(J)與V2成線性關係。由J v.s. V2為線性關係確認了Cu/TaSix or TaN/SiO2 air-gap Damascene結構之漏電流傳導機制主要為space charge limited。由SEM圖觀察結果發現,damascene structures 的溝槽沒有完完全填滿,使得在CMP後造成導線兩側的阻障層受到影響,而影響到漏電流和崩潰電壓。


    The integration of copper, diffusion barrier TaSix or TaN and sacrificial layer HSQ were investigated. We fabricated diffusion barrier layer, TaSix or TaN, sacrificial layer HSQ, develop the processes integration for Cu metallization and investigated the conduction mechanism of line-to-line leakage current for air-gap damascene structure.
    In order to get various thicknesses, we mixed solution with different ratio of HSQ and MIBK after spin on. The HSQ film is a good sacrificial layer with pre-bake temperature 350℃. It has a good mechanical strength during metal CMP and can be removed by BOE solution quickly and easily.
    The Cu air-gap damascene structures with diffusion barrier TaSix or TaN and sacrificial layer HSQ were fabricated. From leakage current measurements, the breakdown electric field of the Cu/TaN(200Å)/SiO2 air-gap damascene structures is 0.94~1.1 MV/cm and the leakage current is about 1.02×10-4~2.27×10-4 A/cm2 before the breakdown occurring. The breakdown electric field of Cu/TaSix(200Å)/SiO2 air-gap damascene structures is 0.73 MV/cm and the leakage current is about 5.9×10-6 A/cm2 before the breakdown occurring. The breakdown electric field of Cu/TaSix(100Å)/SiO2 air-gap damascene structures is higher than 1.3 MV/cm and the leakage current is about 6.6×10-4~2.89×10-3 A/cm2 before the breakdown occurring. From the SEM pictures, we observed the trenches of damascene structures being not filled with the copper. Meanwhile, CMP will remove or shake the barrier layers. The breakdown electric field and the leakage current were enhanced. From various electrical leakage current analyses, we find that the dominant conduction mechanism of the Cu/TaSix or TaN/SiO2 air-gap damascene structures is space charge limited.

    第一章 緒論 第二章 犧牲層HSQ性質與絕緣層漏電流機制 2-1 犧牲層(Sacrificial Layer)HSQ性質 2-2 絕緣層漏電流機制 第三章 量測儀器原理 3-1 四點探針 3-2 α-step 3-3 電流—電壓特性分析(I-V) 3-4 歐傑電子顯微鏡(AES 3-5 掃描式電子顯微鏡(SEM) 3-6 應力量測(Thin-Film Stress) 第四章 實驗 4-1 犧牲層(Sacrificial Layer)HSQ樣品之準備 4-1-1 薄膜配置 4-1-2 蝕刻率樣品製作 4-1-3 RIE樣品製作 4-2 擴散阻障層(Diffusion Barrier) TaSix鍍製 4-2-1 TaSix薄膜樣品之製作 4-3 Air-Gap 銅導線Damascene結構樣品製作 4-3-1 樣品之製作 第五章 量測結果 5-1 犧牲層(Sacrificial Layer)HSQ特性量測 5-1-1 HSQ膜厚 5-1-2 HSQ承受CMP之能力量測結果 5-1-3 BOE對HSQ蝕刻率 5-1-4 HSQ薄膜RIE結果 5-2 擴散阻障層(Diffusion Barrier) TaSix性質量測 5-2-1 歐傑電子顯微鏡縱深分析 5-3 Air-gap 銅導線Damascene 樣品漏電流量測與結果 5-3-1 N200樣品漏電流量測結果 5-3-2 S200樣品漏電流量測結果 5-3-3 S100樣品漏電流量測結果 第六章 Cu/TaSix、TaN/SiO2 Air-gap Damascene平行導線間漏電流機制分析 6-1漏電流量測結果對Schottky Emission之討論 6-1-1 樣品N200漏電流量測結果對Schottky Emission之討論 6-1-2 樣品S200漏電流量測結果對Schottky Emission之討論 6-1-3 樣品S100漏電流量測結果對Schottky Emission之討論 6-2 漏電流量測結果對Space Charge Limited之討論 6-2-1 樣品N200漏電流量測結果對Space Charge Limited之討論 6-2-2 樣品S200漏電流量測結果對Space Charge Limited之討論 6-2-3 樣品S100漏電流量測結果對Space Charge Limited之討論 第七章 結論 參考文獻

    [1] Peter Singer, Semiconductor International, p.91. June 1998
    [2] K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics”, Journal of Applied Physics, vol. 93(11), p.8793-8841, 2003
    [3] C. Lin, L. Clevenger, F. Schnabel, F. F. Jamin, and D. Dobuzinski, “Planarization of dual-damascene post-metal-CMP structures”, IITC, p.99-86, 1999
    [4] C. Y. Chang, S. M. Sze, “ULSI Technology”, McGraw-Hill, Chap. 8, 1996
    [5] J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, “Chemical Mechanical Planization of Microelectronic materials”, John Wiley & Sons, Chap. 1, 1997
    [6] 陳忠賢, “銅/鉭基擴散障礙層與低介電係數材料之製程整合”, 國立清華大學博士論文, 2003
    [7] Ting-Yen Chiang, Ben Shieh, and Krishna C. Saraswat, “Impact of joule heating on deep sub-micron cu/low-k interconnects”.
    [8] L.G. Gosset, V. Arnal, C. Prindle, R. Hoofman, G. Verheijden, R. Daamen, L. Broussous, F. Fusalba, M. Assous, R. Chatterjee, J. Torres, D. Gravesteijn, and K.C. Yu, “General review of issues and perspectives for advanced copper interconnections using air gap as ultra-low K material” .
    [9] Junji Noguchi, Kiyohiko Sato, Nobuhiro Konishi, Syouichi Uno, Takayuki Oshima, Kensuke Ishikawa, Hiroshi Ashihara, Tatsuyuki Saito, Maki Kubo, Tsuyoshi Tamaru, Youhei Yamada, Hideo Aoki, and Tsuyoshi Fujiwara, “Process and Reliability of Air-Gap Cu Interconnect Using 90-nm Node Technology”, IEEE Transactions on Electron Devices, vol. 52, p.352-359 , 2005
    [10] K. Y. Yiang and W. J. Yoo, “Investigation of electrical conduction in carbon-doped silicon oxide using a voltage ramp method”, Applied Physics Letters, vol. 83, p.524-526, 2003
    [11] 彭陳鍠, “銅導線/TaSix/SiOC 鑲嵌結構製程整合”, 國立清華大學碩士論文, 2004
    [12] C.C. Yang, C. Chen, and J. Mater. Chem., “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing”, vol. 12, p.1138-1141, 2002
    [13] S. M. Sze, “Physics of Semiconductor Devices”, 2nd edition, Wiley, 1981
    [14] C. Hamann, H. Burghardt, and T. Frauenheim, “Electrical Conduction Mechanisms in Solids”, Deutscher Verlag der Wissenschaften, 1988

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE