研究生: |
洪建彰 Hung, Chien-Chang |
---|---|
論文名稱: |
A Variable-Length FFT Processor For MIMO OFDM Systems |
指導教授: |
黃元豪
Huang, Yuan-Hao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 產業研發碩士積體電路設計專班 Industrial Technology R&D Master Program on IC Design |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 多重輸入輸出 、正交分頻多工 、快速傅立葉轉換 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在新一代無線通訊系統, 多重輸入輸出(Multiple-Input Multiple-Output, MIMO) 正交分頻多工(Orthogonal Frequency Division Multiplexing) 的技術中, 快速傅立葉轉換(Fast Fourier Transform, FFT) 佔有相當大的重要性。而快速傅立葉轉換處理器最基本的元件,蝴蝶運算器(butterfly) 會因等待資料的輸入而導致整體硬體使用率的下降。我們利用適當大小的前授記憶體(feed forward memory) 提昇蝴蝶運算器的硬體使用率, 且將之用於多重
輸入輸出系統上。且利用適當的記憶體配置方式, 妥善利用回授記憶體, 來降低其硬體複雜度。我們提供傅立葉點數128到2048可變長度的快速傅立葉處理器, 而針對多種傅立葉長度的設計, 在演算法上, 我們使用二維拆解(two-dimensional decompose) 及基底42的方式。
基底42高基底演算法, 可以減少複數乘法的產生, 而使用二維拆解的方式, 分別處理四冪次方及非四冪次方的傅立葉點數。最後, 我們將此用於4X4多重輸入輸出系統的可變長度快速傅立葉轉換器實現成硬體。最後我們以Cell-based 的設計方式, 將此架構實現於晶片。使用製程為UMC 90um , 核心面積(core area) 為2.14987mm2 , 操作頻率在83.3MHz , 符合3GPP-LTE 的規範。
In this paper, we present a variable-length 256-point to 2048-point FFT processor for
4x4 Multiple Input Multiple Output(MIMO) Orthogonal Frequency Division Multiplex-
ing(OFDM) systems. In general, the amount the FFT processors for MIMO system are
dependent on the maximum required of data sequences and the basic unit butterfly has
the 1/r idle time where r is radix-r. It is area-ineffective for VLSI implement. By the
proposed butterfly sharing technique, the effective hardware utilization can be improved
to 100%. The radix-42 algorithm is sufficient to deal with the four data sequences simul-
taneous and reduce the hardware complexity and cost. The signal quantization noise
ratio(SQNR) is over 43 dB for QPSK and 16/64-QAM signals. Moreover we imple-
ment the variable length FFT processor in UMC 90um technology. The core area is
3.193248mm2 with 83.3MHz.
[1] Yu-Wei Lin and Chen-Yi Lee. ”Design of an FFT/IFFT Processor for MIMO
OFDM Systems”. IEEE Trans. Circuits and Systems - I: Regular Papers,
54(4):807–815, Apr 2007.
[2] Mau-Shih Lee Chih-Peng Fan and Guo-An Su. ”A 256-Point Dataflow Scheduling
2x2 MIMO FFT IFFT Processor for IEEE 802.16 WMAN”. APCCAS 2006., pages
1935–1938, Dec 2006.
[3] S. He and M. Torkelson. ”Designing pipeline FFT processor for OFDM
(de)modulation”. ISSSE 98., pages 257–262, Oct 1998.
[4] Hsuan-Yu Liu Yu-Wei Lin and Chen-Yi Lee. ”A 1-GS/s FFT/IFFT processor for
UWB applications”. IEEE Journal of Solid-State Circuits, 40(8):1726–1735, Aug
2005.
[5] C.-H. Lin J.-C. Kuo, C.-H. Wen and A.-Y. Wu. ”VLSI Design of a Variable-Length
FFT/IFFT Processor for OFDM-Based Communication Systems”. EURASIP
Journal on applied Signal Processing, 2003(13):1306–1316, Dec 2003.
[6] Yu-Wei Lin Yuan Chen and Chen-Yi Lee. ”A Block Scaling FFT/IFFTProcessor
for WiMAX Applications”. Proc. IEEE Int. Conf. Asian Solid-State Circuits (ASSCC)
, pages 203–206, Nov 2006.
[7] W.-C. Yeh and C.-W. Jen. ”High-speed and low-power split-radix FFT”. IEEE
Trans. Acoust., Speech, Signal Process., 51(3):864–874, March 2003.
[8] B.M.Bass. ”A Low-Power, High-Performance, 1024-Point FFT Processor”. IEEE
Journal of Solid-State Circuits, 34(3):380–387, March 1999.
[9] T.-D. Chiueh Y.-T. Lin and P.-Y. Tsai. ”Low-power variable-length fast Fourier
transform processor”. IEE Proc.-Comput. Digit. Tech, 152(4):499–506, July 2005.
[10] Mau-Shih Lee Chih-Peng Fan and Guo-An Su. ”A Low Multiplier and Multiplica-
tion Costs 256-point FFT Implementation with Simplified Radix-24 SDF Architec-
ture”. APCCAS 2006., pages 1935–1938, Dec 2006.