研究生: |
繆旭中 Miao, Hsu-Chung |
---|---|
論文名稱: |
具雙向聯網功能之變壓直流鏈電動車永磁同步馬達驅動系統 A VARIED VOLTAGE DC-LINK EV PMSM DRIVE WITH BIDIRECTIONAL GRID-CONNECTED CAPABILITY |
指導教授: |
廖聰明
Liaw, Chung-Ming |
口試委員: |
謝欣然
Hsieh, Hsin-Jan 陳景然 Chen, Ching-Jan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 205 |
中文關鍵詞: | 電動車 、內置磁石式永磁同步馬達 、無位置感測控制 、高頻注入 、蓄電池 、超電容 、介面轉換器 、CLLC諧振轉換器 、切換式整流器 、變頻器 、電網至車輛 、車輛至電網 、車輛至家庭 、能源收集 |
外文關鍵詞: | EV, IPMSM, position sensorless control, HFI, battery, supercapacitor, interface converter, CLLC resonant converter, switch-mode rectifier, inverter, G2V, V2G, V2H, energy harvesting |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一具雙向隔離聯網功能之電動車內置磁石式永磁同步馬達驅動系統。馬達驅動系統之變動直流鏈電壓,由蓄電池經兩相交錯式全橋直流/直流介面轉換器供給,其可低於或高於電池電壓,以提升廣速度範圍之驅動特性與能量轉換效率,相較於傳統介面轉換器,在低速下尤為顯著。再者,超電容經一雙向升/降壓轉換器介接至直流鏈,功率型儲能之超電容能協助電池於急充/放電操作。透過所提混合式能源管理策略,電池與超電容電流命令可適當地分配,以增進能量轉換性能,並減輕電池之負擔。
接著,建構並比較評估弦波與方波高頻注入之無位置感測電動車內置磁石式永磁同步馬達驅動系統。於弦波頻注入方式下,經探討比較直軸與交軸注入下之特性,驗證可知直軸注入有較佳之運轉性能。因此於方波高頻注入方式,僅進行直軸注入。弦波與方波高頻注入機構之理論推導與實作驗證,均詳細為之。
在閒置狀態,雙向隔離聯網操作可藉由馬達驅動系統既有元件與半橋式CLLC諧振轉換器達成。在電網至車輛操作下,馬達驅動變頻器操作成切換式整流器,車載電池可由單相或三相市電進行充電。反之,於車輛至家庭及車輛至電網操作下,電池可藉相同變頻器,供給家用負載或回送功率至電網。另外,變頻器亦可操作為一主動式功率濾波器,以補償負載虛功、諧波與不平衡電流。
最後,為有效利用可獲得之能源,開發一由車頂太陽光伏能源收集器與插入式能源收集器建構之能源收集系統。前者可於任何情況下直接對電池充電。而後者於閒置狀況,以三相維也納切換式整流器作為基礎電路架構,三相/單相交流電源或直流電源可插入至系統,對車載電池進行輔助充電。
This thesis develops an electric vehicle (EV) interior permanent-magnet synchronous motor (IPMSM) drive with bidirectional isolated grid-connected capability. The variable DC-link voltage of motor drive is established by the battery through an interleaved H-bridge converter with two cells. The DC-link voltage can be lower or higher than battery voltage to improve the driving characteristics and energy conversion efficiency over wide speed range, especially under low-speed compared to the conventional interface converter. In addition, a supercapacitor (SC) bank is interfaced to the DC-link via a bidirectional boost/buck converter. The power type storage device SC can assist the battery in quick discharging/charging operations. By the proposed hybrid energy management control strategy, the current commands of battery and SC can be properly distributed to improve the energy conversion performance and alleviate the burden of battery.
Next, the position sensorless controlled EV IPMSM drives based on sine-wave and square-wave high-frequency injections (HFIs) are established and comparatively evaluated. For the former, the comparative characteristics with d-axis and q-axis injections are explored, which demonstrates the better driving performance on d-axis injection. Hence in the square-wave HFI approach, only the d-axis injection is conducted. The detailed derivation and experimental verification are presented.
In idle condition, the bidirectional isolated grid-connected operations of the developed EV drive can be conducted using the embedded motor drive components and a half-bridge CLLC resonant converter. In grid-to-vehicle (G2V) operation, the motor drive inverter is operated as a switch-mode rectifier (SMR). The on-board battery can be charged from the single-phase or three-phase mains. Conversely in vehicle-to-grid (V2G) and vehicle-to- home (V2H) operations, the battery can power the home appliances or sent the preset power back to the grid through the same inverter. Besides, the inverter can also be operated as an active power filter to compensate the load reactive power, harmonic current and unbalanced current.
Finally, to effectively utilize the accessible sources, an energy harvesting system consisting of an EV roof photovoltaic (PV) energy harvester and a plug-in energy harvester is developed. For the former, the EV roof PV can directly charge the battery in any conditions. As to the latter in idle case, a three-phase Vienna SMR is employed as the basic schematic. The three-phase AC, single-phase AC or DC source can be plugged into the system to make the battery auxiliary charging.
[1] C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010.
[2] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
[3] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 3-10, 2013.
[4] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[5] J. de Santiago, H. Bernhoff, B. Ekergård, S. Eriksson, S. Ferhatovic, R. Waters, and M. Leijon, “Electrical motor drivelines in commercial all-electric vehicles: a review,” IEEE Trans. Veh. Technol., vol. 61, no. 2, pp. 475-484, 2012.
[6] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879.
[7] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[8] W. Wang, X. Chen, and J. Wang, “Motor/generator applications in electrified vehicle chassis-a survey,” IEEE Trans. Transport. Electrific., vol. 5, no. 3, pp. 584-601, 2019.
B. Permanent-Magnet Synchronous Motor Drives
[9] K. M. Rahman and S. Hiti, “Identification of machine parameters of a synchronous motor,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 557-565, 2005.
[10] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, “Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1303-1306, 2006.
[11] M. S. Rafaq and J. Jung, “A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4747-4758, 2020.
[12] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shien, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011.
[13] S. Kar and S. K. Mishra, “Direct torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6.
[14] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3728-3737, 2016.
[15] F. Niu, B. Wang, A. S. Babel, K. Li, and E. G. Strangas, “Comparative evaluation of direct torque control strategies for permanent magnet synchronous machines,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1408-1424, 2016.
[16] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[17] F. Morel, X. Lin-Shi, J. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
[18] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, 2011.
[19] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2013.
[20] K. Belda and D. Vošmik, “Explicit generalized predictive control of speed and position of PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3889-3896, 2016.
[21] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive PID speed controller design for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 900-908, 2015.
[22] H. H. Choi, H. M. Yun, and Y. Kim, “Implementation of evolutionary fuzzy PID speed controller for PM synchronous motor,” IEEE Trans. Ind. Inform., vol. 11, no. 2, pp. 540- 547, 2015.
[23] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
[24] S. Bolognani, S. Calligaro, and R. Petrella, ‘‘Adaptive flux-weakening controller for interior permanent magnet synchronous motor drives,’’ IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 236-248, 2014.
[25] T. A. Burress, “Benchmarking EV and HEV technologies,” Technical Report ORNL, 2015.
[26] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016.
C. Hybrid Energy Storage System in EVs
[27] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics-lead acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSim-AMSS, 2015, pp. 444-450.
[28] M. Farhadi and O. Mohammed, “Energy storage technologies for high-power applications,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 1953-1961, 2016.
[29] Y. Fukushima, M. Fukuma, M. Hirose, K. I. Sugiyama, M. Kawami, K. Yoshino, S. Kishida, and S. S. Lee, “Application of electric double layer capacitor and water level sensor to rice field monitoring system,’’ in Proc. IEEE SENSORS, 2018, pp. 1-4.
[30] H. Yoo, S. Sul, Y. Park, and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, 2008.
[31] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
[32] F. Ju, Q. Zhang, W. Deng, and J. Li, “Review of structures and control of battery- supercapacitor hybrid energy storage system for electric vehicles,’’ in Proc. IEEE CASE, 2014, pp. 143-148.
[33] K. Zhuge and M. Kazerani, “Development of a hybrid energy storage system (HESS) for electric and hybrid electric vehicles,” in Proc. IEEE ITEC, 2014, pp. 1-5.
[34] J. Shen and A. Khaligh, “A supervisory energy management control strategy in a battery/ ultracapacitor hybrid energy storage system,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 223-231, 2015.
[35] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 191-200, 2017.
[36] B. Gu and S. W. Cha, “A study of energy consumption in battery/supercapacitor hybrid system based on optimized driving strategy,” in Proc. IEEE ICAMIMIA, 2017, pp. 52-55.
[37] M. O. Badawy, T. Husain, Y. Sozer, and J. A. De Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5810-5819, 2017.
[38] C. Zheng, W. Li, and Q. Liang, “An energy management strategy of hybrid energy storage systems for electric vehicle applications,’’ IEEE Trans. Sustain. Energy, vol. 9, no. 4, pp. 1880-1888, 2018.
[39] H. H. Eldeeb, A. T. Elsayed, C. R. Lashway, and O. Mohammed, “Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2252-2262, 2019.
[40] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011.
[41] M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 739-748, 2013.
[42] M. S. Rafaq, F. Mwasilu, J. Kim, H. H. Choi, and J. Jung, “Online parameter identification for model-based sensorless control of interior permanent magnet synchronous machine,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4631-4643, 2017.
[43] J. H. Jang, S. K. Sul, J. I. Ha, K. Ide, and M. Sawamura, “Sensorless drive of surface- mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1031-1039, 2003.
[44] J. H. Jang, J. I. Ha, M. Ohto, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[45] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
[46] F. Cupertino, G. Pellegrino, P. Giangrande, and L. Salvatore, “Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1371-1379, 2011.
[47] T. C. Lin and Z. Q. Zhu, “Sensorless operation capability of surface-mounted permanent- magnet machine based on high-frequency signal injection methods,” IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2161-2171, 2015.
[48] Y. D. Yoon, S. K. Sul, S. Morimoto, and K. Ide, “High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011.
[49] S. Kim, J. I. Ha, and S. K. Sul, “PWM switching frequency signal injection sensorless method in IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 5, pp. 1576-1587, 2012.
[50] Y. Zhao, Z. Zhang, C. Ma, W. Qiao, and L. Qu, “Sensorless control of surface-mounted permanent-magnet synchronous machines for low-speed operation based on high-frequency square-wave voltage injection,” in Proc. IEEE IAS, 2013, pp. 1-8.
[51] N. C. Park and S. H. Kim, “Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method,” IET Elect. Power Appl., vol. 8, no. 2, pp. 68-75, 2014.
[52] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim, and R. S. Yu, “Suppression of injection voltage disturbance for high-frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 302-312, 2016.
[53] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012.
[54] Y. Park and S. K. Sul, “Sensorless control method for PMSM based on frequency-adaptive disturbance observer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 143- 151, 2014.
[55] R. W. Hejny and R. D. Lorenz, “Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1337-1343, 2011.
[56] A. Sarikhani and O. A. Mohammed, “Sensorless control of PM synchronous machines by physics-based EMF observer,” IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 1009-1017, 2012.
[57] R. Antonello, L. Ortombina, F. Tinazzi, and M. Zigliotto, “Enhanced low-speed operations for sensorless anisotropic PM synchronous motor drives by a modified back-EMF observer,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3069-3076, 2018.
[58] T. Inoue, Y. Hamabe, M. Tsuji, and S. Hamasaki, “Extended EMF-based simple IPMSM sensorless vector control using compensated current controller,” in Proc. IEEE IPEC, 2018, pp. 1276-1281.
[59] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010.
[60] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
[61] S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011.
[62] E. Trancho, E. Ibarra, A. Arias, C. Salazar, I. Lopez, A. Diaz de Guereñu, and A. Peña, “A novel PMSM hybrid sensorless control strategy for EV applications based on PLL and HFI,” in Proc. IEEE IECON, 2016, pp. 6669-6674.
[63] W. Zine, L. Idkhajine, E. Monmasson, Z. Makni, P. A. Chauvenet, B. Condamin, and A. Bruyere, “Optimisation of HF signal injection parameters for EV applications based on sensorless IPMSM drives,” IET Elect. Power Appl., vol. 12, no. 3, pp. 347-356, 2018.
[64] S. J. Chiang and C. M. Liaw, “A single-phase three-wire transformerless inverter,” IEE Proc. Electron. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[65] B. Sahan, S. V. Araújo, C. Nöding, and P. Zacharias, “Comparative evaluation of three- phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011.
[66] E. Koutroulis and F. Blaabjerg, “Methodology for the optimal design of transformerless grid-connected PV inverters,” IET Power Electron., vol. 5, no .8, pp. 1491-1499, 2012.
[67] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
[68] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique, and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
[69] V. Michal, “Three-level PWM floating H-bridge sinewave power inverter for high-voltage and high-efficiency applications,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4065- 4074, 2015.
[70] R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, “A new control structure for grid- connected LCL PV inverters with zero steady-state error and selective harmonic compensation,” in Proc. IEEE APEC, 2004, pp. 580-586.
[71] F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle- to-home functionality,” IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 168- 177, 2015.
[72] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767- 775, 2015.
[73] M. Kwon and S. Choi, “An electrolytic capacitorless bidirectional EV charger for V2G and V2H applications,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6792-6799, 2016.
[74] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157- 171, 2018.
[75] Y. C. Hsu, S. C. Kao, C. Y. Ho, P. H. Jhou, M. Z. Lu, and C. M. Liaw, “On an electric scooter with G2V/V2H/V2G and energy harvesting functions,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6910-6925, 2018.
[76] H. N. de Melo, J. P. F. Trovão, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A controllable bidirectional battery charger for electric vehicles with vehicle-to-grid capability,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 114-123, 2018.
[77] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single-phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[78] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[79] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[80] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems-part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[81] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013.
[82] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[83] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.
[84] M. C. Kisacikoglu, B. Ozpineci, and L. M. Tolbert, “EV/PHEV bidirectional charger assessment for V2G reactive power operation,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5717-5727, 2013.
[85] S. Kim and F. S. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, 2015.
[86] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[87] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
[88] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
[89] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard charger,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, 2017.
[90] K. Fahem, D. E. Chariag, and L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles,” in Proc. IEEE GECS, 2017, pp. 1-6.
[91] A. Khaligh and M. D. Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, 2019.
[92] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, pp. 1329-1336.
[93] R. Burgos, R. Lai, Y. Pei, F. Wang, D. Boroyevich, and J. Pou, “Space vector modulator for Vienna-type rectifiers based on the equivalence between two- and three-level converters: a carrier-based implementation,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1888-1898, 2008.
[94] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for VIENNA-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, 2009.
[95] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems—part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[96] J. Lee and K. Lee, “A novel carrier-based PWM method for Vienna rectifier with a variable power factor,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 3-12, 2016.
[97] J. I. Cairo and A. Sumper, “Requirements for EV charge stations with photovoltaic generation and storage,” in Proc. IEEE ISGT, 2012, pp. 1-6.
[98] S. A. Singh and S. S. Williamson, “Comprehensive review of PV/EV/grid integration power electronic converter topologies for DC charging applications,” in Proc. IEEE ITEC, 2014, pp. 1-5.
[99] M. Abdelhamid, R. Singh, and I. Haque, “Role of PV generated DC power in transport sector: case study of plug-in EV,” in Proc. IEEE ICDCM, 2015, pp. 299-304.
[100] C. Schuss, T. Fabritius, B. Eichberger, and T. Rahkonen, “Impacts on the output power of photovoltaics on top of electric and hybrid electric vehicles,” IEEE Trans. Instrum. Meas., vol. 69, no. 5, pp. 2449-2458, 2020.
[101] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2012.
[102] J. Jung, H. Kim, M. Ryu, and J. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, 2013.
[103] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, 2015.
[104] S. Zou, J. Lu, A. Mallik, and A. Khaligh, “Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 998- 1005, 2018.
[105] M. N. Kheraluwala, R. W. Gascoigne, D. M. Divan, and E. D. Baumann, “Performance characterization of a high-power dual active bridge dc-to-dc converter,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1294-1301, 1992.
[106] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2012.
[107] G. Oggier, G. O. García, and A. R. Oliva, “Modulation strategy to operate the dual active bridge DC-DC converter under soft switching in the whole operating range,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1228-1236, 2011.
[108] L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli, and D. Diaz, “Dual active bridge-based battery charger for plug-in hybrid electric vehicle with charging current containing low frequency ripple,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7299-7307, 2015.
[109] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, 2017.
[110] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” 2009.
[111] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti.com/lit/ds/ symlink/tms320f28335.pdf, 2016.
[112] S. K. Wu, “An electric vehicle permanent-magnet synchronous motor drive with varied- voltage DC-link and fault-tolerant capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2020.
[113] “Comparative characteristics of batteries,” Available: https://leadcrystalbatteries.com/lead- crystal-battery-performance, 2019.
[114] “Super-capacitor BMOD0006 E160 B02 data sheet,” Available: https://www.maxwell.com/ images/documents/160VModule_DS_3000246_6.pdf, 2019.