研究生: |
黃為學 Huang, Wei-Hsueh |
---|---|
論文名稱: |
函數型資料的階層變異數分析與檢定 Hierarchical ANOVA and F-Tests for Functional Data with Local Polynomial Fitting |
指導教授: |
黃禮珊
Huang, Li-Shan |
口試委員: |
謝叔蓉
Shieh, Shwu-Rong 李育杰 Lee, Yuh-Jye 楊承道 Yang, Cheng-Tao |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 函數型資料 、單因子變異數分析 、局部多項式迴歸 |
外文關鍵詞: | functional data, one-way ANOVA, local polynomial regression |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文探討函數型資料的單因子變異數分析(one-way ANOVA for functional data)問題,並提出新的檢定統計量,包括函數局部與全域的檢定統計量,其中使用局部多項式迴歸(local polynomial regression)方法於函數的估計上,建立單一函數、群平均函數與總平均函數之估計。透過單一函數、整群函數與全體函數之誤差平方和(sum of squared errors),來定義函數組內與組間的變異量,提出的檢定統計量形式仿效傳統的單因子變異數分析,將組間變異量除以組內變異量,且證明新的檢定統計量會近似F分配。模擬中除了觀察提出之統計量在不同情況下,型一錯誤(type I error)和檢定力(power)等的變化外,還與文獻上的其它方法比較,且針對函數型資料有相關性時,加入generalized least squares以提升檢定力。最後則將方法應用在高速公路的交通資料上,並進行有關2016年高雄美濃地震的案例研究。
We propose and study a new test for the one-way ANOVA problem for functional data based on local polynomial regression with hierarchical ANOVA structures. Exact local and global ANOVA expressions are obtained for estimating individual curves, a mean curve within a group of functions, and an overall mean curve for all groups of functions. The proposed test statistics, mimicking the classical one-way ANOVA, have a form of comparing between-group SSE to within-group SSE, and are shown to have asymptotic F-distributions. Simulation studies are presented to compare the proposed global ANOVA test with some tests in the literature. A real data example on traffic flows illustrate the proposed tests.
[1] Cuevas, A., Febrero, M., and Fraiman, R. (2004). An Anova Test for Functional Data. Computational Statistics & Data Analysis, 47, 111–122.
[2] Gorecki, T. and Smaga, L. fdANOVA: An R Software Package for Analysis of Variance for Univariate and Multivariate Functional Data.
[3] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and Hall/CRC.
[4] Härdle, W. and Simar, L. (2003). Applied Multivariate Statistical Analysis.
[5] Huang, L.-S. and Chen, J. (2008). Analysis of variance, coefficient of determination and F-test for local polynomial regression. The Annals of Statistics, 36, 2085-2109.
[6] Huang, L.-S. and Su, H. (2009). Nonparametric F-tests for nested global and local polynomial models. Journal of Statistical Planning and Inference, 139, 1372-1380.
[7] Zhang, J.-T. (2011). Statistical Inferences for Linear Models with Functional Responses. Statistica Sinica, 21, 1431–1451.
[8] Zhang, J.-T. (2013). Analysis of Variance for functional data. Chapman & Hall, London.
[9] Zhang, J.-T. and Chen, J.-W. (2007). Statistical Inferences for Functional Data. The Annals of Statistics, 35, 1052–1079.
[10] Zhang, J.-T., Cheng, M.-Y., Tseng, C.-J. and Wu, H.-T. (2013). A New Test for One-Way ANOVA with Functional Data and Application to Ischemic Heart Screening. ArXiv:1309.7376v1.
[11] Zhang, J.-T. and Liang, X. (2014). One-Way ANOVA for Functional Data via Globalizing the Pointwise F-Test. Scandinavian Journal of Statistics, 41, 51–71.