研究生: |
何聖傑 Ho, Sheng-Chieh |
---|---|
論文名稱: |
以氧化製程改善600V橫向 4H-碳化矽高壓元件 Improvement of 600V Lateral 4H-SiC High-voltage Devices by Oxidation Process |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
李坤彥
Lee, Kung-Yen 黃宗義 Huang, Tsung-Yi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 碳化矽 、氧化製程 、場平板 |
外文關鍵詞: | SiC, RESURF, NO annealing |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要希望發展出600V之4H-橫向型碳化矽高壓元件與隔離以供未來的BCD (Bipolar-CMOS-LDMOS)製程平台來使用,通過改善氧化製程來增強元件的性能,預期能做出比矽材料更低的特徵導通電阻且耐壓600V以上的橫向型高壓元件。
論文中使用RESURF結構及場平板設計橫向高壓元件,採用氧化後一氧化氮熱退火方式改善N型橫向擴散金氧半場效電晶體反轉通道,通道電子遷移率從6.54 cm^2/V∙s 提升至41.05〖 cm〗^2/V∙s,通過增加場氧化層的厚度改善表面電場分布,提升崩潰電壓。根據實驗結果,在漂移區長度為14μm下量測到的最佳LDMOS特徵導通電阻(Vg=30V)及崩潰電壓為252 mΩ*cm2、680V,而橫向PiN為9.27 mΩ*cm2、770V,同時利用電漿蝕刻以及P+溝槽離子佈植實現深溝槽隔離,達到隔離600V以上的效果。
This thesis mainly focuses on the development of 600V lateral 4H-SiC high-voltage devices and isolation to provide a BCD (Bipolar-CMOS-LDMOS) process platform for use in the future. The performance of these devices was improved by adjusting the oxidation process. It is expected to demonstrate lateral high-voltage devices with lower Ron,sp than those of silicon counterparts with a breakdown voltage of more than 600V.
In this thesis, RESURF structure and field plate are used in the design of lateral high-voltage devices. NO annealing has been used to improve the inversion channel for n-type LDMOS transistors. The electron channel mobility is increased from 6.54cm^2/V∙s to 41.05cm^2/V∙s. By increasing the thickness of the field oxide layer, the surface electric field profile is improved to increase the breakdown voltage. From the experiment results, the best Ron,sp (Vg=30V)and breakdown voltage of LDMOS are 252 mΩ*cm2 and 680V, while those of lateral PiN are 9.27 mΩ*cm2 and 770V with a drift region length of 14μm. In the meantime, plasma etching and P+ trench implantation are used to realize deep trench isolation capable of more than 600V isolation.
[1] C. M. Zetterling, Process Technology for Silicon Carbide Device, EMIS processing series IEEE, 2002.
[2] A. Powell and L. Rowland, "SiC materials-progress, status, and potential roadblocks," IEEE, vol. 90, no. 6, pp. 942 - 955, June 2002.
[3] J. Appels and H. Vaes, "High voltage thin layer devices (RESURF devices)," in IEEE Electron Devices Meeting, Washington, DC, USA, 1979.
[4] K. Chatty, S. Banerjee, T. P. Chow. and R. J. Gutmann, "High-voltage lateral RESURF MOSFETs on 4H-SiC," IEEE Electron Device Lett., vol. 21, no. 7, pp. 356 - 358, July 2000.
[5] T. Kimoto, H. Kawano and J. Suda, "1330 V, 67 mΩ·cm2 4H-SiC(0001) RESURF MOSFET," IEEE Electron Device Lett., vol. 26, no. 9, pp. 649-651, October 2005.
[6] M. Noborio, Y. Negoro, J. Suda and T. Kimoto, "Reduction of On-Resistance in 4H-SiC Multi-RESURF MOSFETs," Materials science Forum., Vols. 527-529, pp. 1305-1308, October 2006.
[7] M. Noborio, J. Suda and T. Kimoto, "4H-SiC Double RESURF MOSFETs with a Record Performance by Increasing RESURF Dose," in 2008 20th International Symposium on Power Semiconductor Devices and IC's, Orlando, FL, USA, 2008.
[8] H. F. Li, S. Dimitrijev, H. B. Harrison and D. Sweatman, "Interfacial characteristics of N2O and NO nitride SiO2 grown on SiC by rapid thermal processing," Applied Physics Letters, vol. 70, no. 15, pp. 2028-2030, April 1997.
[9] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das and J. W. Palmour, "Improve Inversion Channel Mobility for 4H-SiC MOSFETs Following High Temperature Anneals in Nitric Oxide," IEEE Electron Device Letter, vol. 22, no. 4, pp. 176-178, April 2001.
[10] M. Imam, M. Quddus, J. Adams and Z. Hossain, "Efficacy of charge sharing in reshaping the surface electric field in high-voltage lateral RESURF devices," vol. 51, no. 1, pp. 141-148, January 2004.
[11] B. Balig, Fundamentals of Power Semiconductor Devices, 2008.
[12] T. Kimoto, K. Kawahara, H. F. N. Kaji and J. Suda, "Ion Implantation Technology in SiC for High-Voltage/High-Temperature Device," in 2016 16th International Workshop on Junction Technology (IWJT), Shanghai, 2016.
[13] Y. Song, S. Dhar, L. C. Feldman, G. Chung and J. R. Williams, "Modified Deal Grove model for the thermal oxidation of silicon carbide," Journal of Applied Physics, vol. 95, no. 9, pp. 4953-4957, May 2004.
[14] V. Simonka, A. Hossinger, J. Weinbub and S. Selberherr, "Growth rates of dry thermal oxidation of 4H‐silicon carbide," Journal of Applied Physics, vol. 120, no. 13, pp. 135705-1-135705-8, September 2016.
[15] Y. Nanen, M. Kato, J. Suda and T. Kimoto, "Effects of Nitridation on 4H-SiC MOSFETs Fabricated on Various Crystal Faces," IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 1260 - 1262, March 2013.
[16] T. Hosoi, D. Nagai, M. Sometani, Y. Katsu, H. Takeda, T.Shimura, M. Takei and H. Watanabe, "Ultrahigh-temperature rapid thermal oxidation of 4H-SiC(0001) surfaces and oxidation temperature dependence of SiO2/ SiC interface properties," in 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), Halkidiki, 2016.
[17] M. Qiao, H.J.Wang, M. W. .Duan, J. Fang, B. Zhang and Z. J. Li, "Realization of an 850V High Voltage Half Bridge GateDrive IC with a New NFFP HVI Structure," JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA, vol. 5, no. 4, pp. 328-331, December 2007.
[18] Y. Negoro, K. Katsμmoto, T. Kimoto and H. Matsunami, "Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC(0001)," Journal of Applied Physics, vol. 96, no. 1, pp. 224-228, June 2004.
[19] F. J. Yang, J. Gong, R. Y. Su, C. L. Tsai, H. C. Tuan and C. F. Huang, "RESURF p-n Diode With a Buried Layer, a Comprehensive Study," IEEE Transactions on Electron Devices, vol. 60, no. 11, pp. 3835 - 3841, October 2013.
[20] Sridhar, Huang and Baliga, "Dielectrically isolated lateral high voltage P-i-N rectifiers for power ICs," in 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA, 1992.
[21] S. Cheng, D. Fang, M. Qiao, S. Zhang, G. Zhang, Y. Gu, Y. He, X. Zhou, Z. Qi, Z. Li and B.Zhang, "A novel 700V deep trench isolated double RESURF LDMOS with P-sink layer," in 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), Sapporo, Japan, 2017.
[22] S. Lee, C. K. Jeon, J. Moon and Y. Choi, "700 V lateral DMOS with new source fingertip design," in 20th ISPSD, Orlando, FL, USA, 2008.
[23] M. Qiao, L. L. Jiang, B. Zhang and Z. J. Li, "A 700 V BCD technology platform for high voltage applications," Journal of Semiconductors, vol. 33, no. 4, pp. 044004-1-044004-4, April 2012.