簡易檢索 / 詳目顯示

研究生: 曾凱莉
Kai-li Tseng
論文名稱: 胃幽門螺旋桿菌細胞毒素相關基因A的基因選殖與在哺乳動物細胞中的表達
Molecular Cloning of Helicobacter pylori Cytotoxin-Associated Gene A and Its Expression in Mammalian Cells
指導教授: 傅化文
Dr. Hua-wen Fu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 54
中文關鍵詞: 胃幽門螺旋桿菌細胞毒素相關基因A第四類分泌系統蜂鳥形表型
外文關鍵詞: Helicobacter pylori, cagA, type IV secretion system, hummingbird phenotype
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胃幽門螺旋桿菌已知是引起胃炎、消化性潰瘍,甚至是胃癌的主要原因之一。它感染在人類的胃部,且現今在世界人口中的感染率已達五成。在胃幽門桿菌所產生的毒性因子中,其中的「細胞毒性相關基因A」 (cytotoxin-associated gene A; cagA) 所產生的毒素,被認為在引起上述較嚴重的胃部疾病中扮演重要角色。然而,其之所以致病的詳細分子機制卻仍有待研究。過去已知在具cagA基因的胃幽門桿菌菌株的感染中,CagA會被經由細菌的第四類分泌系統 (type IV secretion system) 直接注入到宿主表皮細胞內。進入到細胞中的CagA會被宿主細胞的Src家族磷酸化酵素在CagA上的絡胺酸(tyrosine)處磷酸化,而被磷酸化的絡胺酸則是在麩胺酸(glutamic acid; E)-脯胺酸(proline; P)-異白胺酸(isoleucine; I)-絡胺酸(tyrosine; Y)-丙胺酸(alanine; A)的五胺基酸序列(EPIYA)中。當CagA被磷酸化後,會引起宿主細胞其細胞骨架之重組,產生所謂「蜂鳥形表型」(hummingbird phenotype),亦即細胞伸展延長,類似蜂鳥嘴巴形狀的外觀。另一方面,不同菌株的CagA蛋白質在羧基端(C-terminal)部分的胺基酸序列具有相當的差異,而這些差異被認為是不同菌株之所以造成不同疾病的原因之一。另外,各菌株的分佈亦存在著地理區域上的差異,這些地理分佈上的差異也可能與不同地區胃癌盛行率不同有關。為了研究CagA對哺乳動物細胞的影響,在此論文中,我建構了以pEGFP-N1質體為基礎的cagA基因哺乳動物細胞表現載體並於哺乳動物細胞株中表達。我發現在人類胃黏膜上皮細胞株(AGS cells)中有些細胞確實產生延展及分散的型態,然而,這些載體所表現出的CagA蛋白質量卻很低,幾乎無法偵測到,從這些結果,我推測此系統的載體對於在哺乳動物細胞中表達cagA基因並不合適。此外,我也做了26695與NCTC11637兩菌株的胺基酸序列比對;亦比對了五株台灣菌株、另一東亞菌株(F32)及26695菌株在羧基端部分的胺基酸序列。從這些序列比對的結果中,可以推測不同的序列很可能導致不同的CagA活性,進而造成胃幽門螺旋桿菌感染時不同的結果。這些序列上的差異,對於臨床上疾病的發展、預後,亦可作為一參考的指標。


    Helicobacter pylori (H. pylori) is the major causative agent of gastritis, peptic ulcer diseases and even gastric cancer. This pathogen colonizes the human stomachs of at least half of the world’s population. Cytotoxin-associated gene A (cagA), one of the virulence factors generated by H. pylori, is considered to play an important role in the pathogenesis of these diseases. However, the molecular mechanism under the pathogenesis is still unclear and needs to be identified. It has been known that during cagA+-H. pylori infection, CagA is translocated into host epithelial cells via type IV secretion system. Translocated CagA is tyrosine phosphorylated on specific EPIYA sequence repeats by cellular Src family tyrosine kinases. Phosphorylation of CagA induces rearrangements of host-cell actin-cytoskeleton and cell scattering, resulting in the so-called “hummingbird phenotype”. On the other hand, CagA from different strains varies in sequences in the C-terminal region. Strain-specific genetic diversity of CagA has been proposed to be involved in the ability of different H. pylori strains to cause different diseases. There are also indications of significant geographic differences among strains. In order to study the effect of CagA in mammalian cells, in this study, I constructed pEGFP-N1 based cagA-expression vectors and expressed cagA in mammalian cells. I found that in AGS cells transfected with these cagA-expression vectors, some cells exhibited elongated and scattering phenotypes. However, the expression level of CagA was low. The result indicated that pEGFP-N1 based vectors might not be suitable for ectopically expressing cagA. In addition, I also performed total amino-acid sequence alignment of two H. pylori strains (26695 and NCTC11637) and sequence alignment of C-terminal region of five Taiwan strains with those of another East Asian strain (F32) and strain 26695. The result suggested that the presence of particular sequences might probably correlate with different activities of CagA. These sequences may serve as indications of different disease outcomes of different H. pylori infection.

    Abstract V Abstract (Chinese) VI Acknowledgement VII Abbreviations VIII Table of Contents IX List of Figures XI List of Tables XII Introduction 1 Materials and Methods 11 Results 18 Discussion 28 Reference 34

    Akopyants, N.S., Clifton, S.W., Kersulyte, D., Crabtree, J.E., Youree, B.E., Reece, C.A., Bukanov, N.O., Drazek, E.S., Roe, B.A. and Berg, D.E. (1998) Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol, 28, 37-53.
    Amieva, M.R., Vogelmann, R., Covacci, A., Tompkins, L.S., Nelson, W.J. and Falkow, S. (2003) Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science, 300, 1430-1434.
    Asahi, M., Azuma, T., Ito, S., Ito, Y., Suto, H., Nagai, Y., Tsubokawa, M., Tohyama, Y., Maeda, S., Omata, M., Suzuki, T. and Sasakawa, C. (2000) Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med, 191, 593-602.
    Azuma, T. (2004) Helicobacter pylori CagA protein variation associated with gastric cancer in Asia. J Gastroenterol, 39, 97-103.
    Backert, S., Moese, S., Selbach, M., Brinkmann, V. and Meyer, T.F. (2001) Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol Microbiol, 42, 631-644.
    Backert, S., Ziska, E., Brinkmann, V., Zimny-Arndt, U., Fauconnier, A., Jungblut, P.R., Naumann, M. and Meyer, T.F. (2000) Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol, 2, 155-164.
    Blaser, M.J., Perez-Perez, G.I., Kleanthous, H., Cover, T.L., Peek, R.M., Chyou, P.H., Stemmermann, G.N. and Nomura, A. (1995) Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res, 55, 2111-2115.
    Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., Ghiara, P., Borodovsky, M., Rappuoli, R. and Covacci, A. (1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A, 93, 14648-14653.
    Censini, S., Stein, M. and Covacci, A. (2001) Cellular responses induced after contact with Helicobacter pylori. Curr Opin Microbiol, 4, 41-46.
    Churin, Y., Al-Ghoul, L., Kepp, O., Meyer, T.F., Birchmeier, W. and Naumann, M. (2003) Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol, 161, 249-255.
    Covacci, A., Censini, S., Bugnoli, M., Petracca, R., Burroni, D., Macchia, G., Massone, A., Papini, E., Xiang, Z., Figura, N. and et al. (1993) Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A, 90, 5791-5795.
    Covacci, A., Telford, J.L., Del Giudice, G., Parsonnet, J. and Rappuoli, R. (1999) Helicobacter pylori virulence and genetic geography. Science, 284, 1328-1333.
    Crostella, L., Lidder, S., Williams, R. and Skouteris, G.G. (2001) Hepatocyte Growth Factor/scatter factor-induces phosphorylation of cortactin in A431 cells in a Src kinase-independent manner. Oncogene, 20, 3735-3745.
    Danesh, J. (1999) Helicobacter pylori infection and gastric cancer: systematic review of the epidemiological studies. Aliment Pharmacol Ther, 13, 851-856.
    De Souza, D., Fabri, L.J., Nash, A., Hilton, D.J., Nicola, N.A. and Baca, M. (2002) SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatase SHP-2 have similar binding specificities. Biochemistry, 41, 9229-9236.
    Dong, Q., O'Sullivan, M., Hall, W., Herra, C., Kean, C., O'Morain, C. and Buckley, M. (2002) Identification of a new segment involved in cagA 3' region variation of Helicobacter pylori. FEMS Immunol Med Microbiol, 33, 51-55.
    Eck, M., Schmausser, B., Haas, R., Greiner, A., Czub, S. and Muller-Hermelink, H.K. (1997) MALT-type lymphoma of the stomach is associated with Helicobacter pylori strains expressing the CagA protein. Gastroenterology, 112, 1482-1486.
    Finlay, B.B. and Falkow, S. (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev, 61, 136-169.
    Freeman, R.M., Jr., Plutzky, J. and Neel, B.G. (1992) Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew. Proc Natl Acad Sci U S A, 89, 11239-11243.
    Guillemin, K., Salama, N.R., Tompkins, L.S. and Falkow, S. (2002) Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection. Proc Natl Acad Sci U S A, 99, 15136-15141.
    Higashi, H., Nakaya, A., Tsutsumi, R., Yokoyama, K., Fujii, Y., Ishikawa, S., Higuchi, M., Takahashi, A., Kurashima, Y., Teishikata, Y., Tanaka, S., Azuma, T. and Hatakeyama, M. (2004) Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem, 279, 17205-17216.
    Higashi, H., Tsutsumi, R., Fujita, A., Yamazaki, S., Asaka, M., Azuma, T. and Hatakeyama, M. (2002a) Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci U S A, 99, 14428-14433.
    Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M. and Hatakeyama, M. (2002b) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295, 683-686.
    Huang, C., Ni, Y., Wang, T., Gao, Y., Haudenschild, C.C. and Zhan, X. (1997) Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem, 272, 13911-13915.
    Huang, J.Q., Sridhar, S., Chen, Y. and Hunt, R.H. (1998) Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology, 114, 1169-1179.
    IARC (1994) Schistomes, Liver Flukes and Helicobacter pylori. IARC Monographs on the Evaluation of Carcinogenesis Risks to Humans. 61. IARC (International Agency for Research on Cancer), Lyon, France.
    Jamora, C. and Fuchs, E. (2002) Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol, 4, E101-108.
    Knust, E. and Bossinger, O. (2002) Composition and formation of intercellular junctions in epithelial cells. Science, 298, 1955-1959.
    Kodama, A., Matozaki, T., Fukuhara, A., Kikyo, M., Ichihashi, M. and Takai, Y. (2000) Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering. Mol Biol Cell, 11, 2565-2575.
    Lee, V.T. and Schneewind, O. (2001) Protein secretion and the pathogenesis of bacterial infections. Genes Dev, 15, 1725-1752.
    Marshall, B. J., and Warren, J. R. (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet, 1, 1273-1275.
    Maulik, G., Shrikhande, A., Kijima, T., Ma, P.C., Morrison, P.T. and Salgia, R. (2002) Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev, 13, 41-59.
    Mimuro, H., Suzuki, T., Tanaka, J., Asahi, M., Haas, R. and Sasakawa, C. (2002) Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol Cell, 10, 745-755.
    Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W. and Haas, R. (2000) Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 287, 1497-1500.
    Parsonnet, J., Friedman, G.D., Orentreich, N. and Vogelman, H. (1997) Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut, 40, 297-301.
    Peek, R.M., Jr. and Blaser, M.J. (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer, 2, 28-37.
    Segal, E.D., Cha, J., Lo, J., Falkow, S. and Tompkins, L.S. (1999) Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A, 96, 14559-14564.
    Segal, E.D., Falkow, S. and Tompkins, L.S. (1996) Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc Natl Acad Sci U S A, 93, 1259-1264.
    Selbach, M., Moese, S., Hauck, C.R., Meyer, T.F. and Backert, S. (2002) Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem, 277, 6775-6778.
    Selbach, M., Moese, S., Hurwitz, R., Hauck, C.R., Meyer, T.F. and Backert, S. (2003) The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. Embo J, 22, 515-528.
    Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W.J. and Covacci, A. (2002) c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol, 43, 971-980.
    Stein, M., Rappuoli, R. and Covacci, A. (2000) Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A, 97, 1263-1268.
    Stella, M.C. and Comoglio, P.M. (1999) HGF: a multifunctional growth factor controlling cell scattering. Int J Biochem Cell Biol, 31, 1357-1362.
    Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., Ketchum, K.A., Klenk, H.P., Gill, S., Dougherty, B.A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E.F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H.G., Glodek, A., McKenney, K., Fitzegerald, L.M., Lee, N., Adams, M.D., Venter, J.C. and et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388, 539-547.
    Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M. and Hatakeyama, M. (2003) Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J Biol Chem, 278, 3664-3670.
    Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M., Taniyama, K., Sasaki, N. and Schlemper, R.J. (2001) Helicobacter pylori infection and the development of gastric cancer. N Engl J Med, 345, 784-789.
    Uruno, T., Liu, J., Zhang, P., Fan, Y., Egile, C., Li, R., Mueller, S.C. and Zhan, X. (2001) Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol, 3, 259-266.
    Watanabe, T., Tada, M., Nagai, H., Sasaki, S. and Nakao, M. (1998) Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology, 115, 642-648.
    Weaver, A.M., Karginov, A.V., Kinley, A.W., Weed, S.A., Li, Y., Parsons, J.T. and Cooper, J.A. (2001) Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol, 11, 370-374.
    Wong, B.C., Ching, C.K. and Lam, S.K. (1999) Helicobacter pylori infection and gastric cancer. Hong Kong Med J, 5, 175-179.
    Wu, H. and Parsons, J.T. (1993) Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol, 120, 1417-1426.
    Wu, H., Reynolds, A.B., Kanner, S.B., Vines, R.R. and Parsons, J.T. (1991) Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol, 11, 5113-5124.
    Yamazaki, S., Yamakawa, A., Ito, Y., Ohtani, M., Higashi, H., Hatakeyama, M. and Azuma, T. (2003) The CagA protein of Helicobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa. J Infect Dis, 187, 334-337.
    Yang, J.C., Wang, T.H., Wang, H.J., Kuo, C.H., Wang, J.T. and Wang, W.C. (1997) Genetic analysis of the cytotoxin-associated gene and the vacuolating toxin gene in Helicobacter pylori strains isolated from Taiwanese patients. Am J Gastroenterol, 92, 1316-1321.
    Yu, D.H., Qu, C.K., Henegariu, O., Lu, X. and Feng, G.S. (1998) Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem, 273, 21125-21131.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE