簡易檢索 / 詳目顯示

研究生: 方世杰
Fong, Shih-Chieh
論文名稱: 非晶矽薄膜之微波結晶研究
Microwave crystallization of amorphous Si thin films
指導教授: 金重勳
Chin, Tsung-Shune
口試委員: 張存續
鄭世裕
江雨龍
張宏宜
金重勳
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 112
中文關鍵詞: 微波非晶矽多晶矽介電特性
外文關鍵詞: Microwave, Amorphous silicon, Poly-crystalline silicon, Dielectric properties
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Crystalline silicon film is extremely important for low-cost, high performance Si-based devices, such as thin-film transistors and solar cells. Re- crystallization of amorphous silicon (a-Si) thin film is widely studied and used in various fields among others. The most used crystallization technologies of a-Si films are solid phase crystallization, metal induced crystallization, and laser crystallization. In applying to large-area manufacturing these techniques have their own problems, such as high process temperature, metal impurity, high cost, among others. Microwave heating of a material is to transfer the absorb microwave energy into heat. Our purpose of study is to make use of remote microwave irradiation incorporating a suitable susceptor, which can effectively focus microwave energy on silicon films, to crystallize a-Si film.
    This study employs an elliptical microwave applicator which is able to focus microwave, to process a-Si placing near the field maximum. We demons- trated that microwave irradiation incorporating with SiC susceptor is able to crystallize amorphous silicon (a-Si) film on glass substrate at a low temperature of 460 oC within a short period of 600 s. The crystal structure is similar to those after furnace annealing at 700 oC for 12 hours. This method is extendable to fast-crystallize a-Si film on a remote and large-area basis, and very time- and energy-effective.
    The other study was to demonstrate that microwave irradiation, 200 W, is able to fast-crystallize a-Si:H film using the susceptor of carbon-overcoat which contains graphite and carbon nano-tube. Nearly full crystallization is reached within 90 s. In the last example, we used the microwave irradiation (~ 400 W) incorporating multilayer structure films (C/a-Si/C) with SiC disk susceptor is able to crystallize and transfer poly-silicon pattern to other substrates. Besides, n- and p-doped a-Si films were also microwave crystallized to show better electrical performances than those of commercially available samples.
    We elucidated the crystallization mechanisms for such a short processing time and at low observed temperatures. The reason of fast crystallization is attributed to the thermal energy from the susceptor which is heated under microwave irradiation. The a-Si is heated above a critical temperature where the dielectric properties of the heated a-Si, and enhanced nucleation of Si-crystallite due to atomic/dipole vibration, take place in response to microwave irradiation. The later is a non-thermal process occurred above a critical temperature in a-Si.


    結晶矽薄膜是非常重要的低成本、高性能材料,大量用於如薄膜電晶體,太陽能電池。其中,再結晶型的非晶矽(a- Si)薄膜被廣泛研究和應用在各個領域中。習知之非晶矽膜再結晶法包括固相結晶法、金屬輔助層法與雷射結晶法等。這些技術應用到大面積非晶矽的結晶製造中各有其自身的問題,如加工溫度過高,金屬雜質含量過大,時間太長、成本過高等。本研究目的在於開發微波加熱法,利用微波助吸材,研究其對非晶矽薄膜結晶的效果。
    這項研究採用了可聚焦微波的橢圓形微波系統,材料放置在系統中微波場的最大值區域。首先,我們證明了微波照射結合碳化矽微波助吸材可將在玻璃基板上之非晶矽(a- Si)薄膜在460 oC的低溫與短時間600秒內結晶。其次,我們證明了用碳化矽粉末助吸材在300 W微波照射下可使a-Si薄膜結晶,其退火時間縮短,結晶過程不超過100秒。所得晶體結構相似於以一般爐退火在700 oC、12小時後者。此方法可擴展到a-Si薄膜在遠端照射和大面積基礎上的快速結晶。
    另一項研究表明,於200 W微波照射下,使用含有石墨和碳納米管的助吸材層,能夠快速將a-Si:H薄膜結晶。幾乎是90秒內可以達到完全結晶。通過這樣的特性,多層薄膜的結構(碳/非晶矽/碳)用碳化矽片材助吸材、以〜400 W微波照射,可以導致非晶矽結晶,並可將結晶後的圖樣轉移到異質的基材上。
    最後,利用微波結晶迅速、均勻加熱和選擇性加熱特點,以摻雜之非晶矽薄膜作微波低溫結晶化,發現可以得到比商用者更佳之電性,尤以N型者其載子動率遠高於商用者。這驗證了微波結晶可應用於矽元件上。
    本研究提出以助吸材配合微波照射,可以令非晶矽低溫快速結晶之機制。這主要是藉助於微波助吸材對微波的集中與吸收發熱效果,使非晶矽的溫度達到一個臨界值以上。這時非晶矽內部的結晶成核受到加速(熱效果),而且非晶矽內不對稱結構導致之電偶極也受到微波場激盪而共振(非熱效果),導致快速結晶。

    Abstract ii Abstract (Chinese) iii Acknowledgments iv Table of content v List of Tables ix List of Figures x List of Symbols xv ------------------------------------------------------------ Chapter 1 Introduction and motivations 1 1-1 History of low-temperature poly-silicon technology 2 1-2 Advantage of low-temperature poly-silicon technology 3 1-3 Motivation 4 Chapter 2 Literature reviews 5 2-1 Introduction to microwave annealing 5 2-1-1 Interaction between microwaves and materials 5 2-1-2 Application of microwave annealing to processing of materials 24 2-2 Characteristic of microwave susceptors 29 2-2-1 Absorption property of SiC and carbon 30 2-2-2 Thermal conductivity of SiC and carbon 32 2-3 Crystallization process of amorphous silicon 34 2-3-1 Solid phase crystallization 35 2-3-2 Metal induced crystallization 37 2-3-3 Excimer laser annealing 39 Chap 3 Experimental 41 3-1 Microwave heating with SiC susceptor 41 3-1-1 Preparation of microwave system with susceptor 42 3-1-2 Simulation of microwave field with susceptor 43 3-1-3 Identification of microwave heating of SiC powder and bulk 44 3-2 Microwave heating with carbon overcoat 46 3-2-1 Simulation of electric field with carbon overcoat 46 3-2-2 Carbon overcoat containing CNT and carbon powder 48 3-3 Microwave heating of C/a-Si/C multilayer film 49 3-3-1 Microwave heating of of C/a-Si/C multilayer film 51 3-3-2 Simulation of microwave field of C/a-Si/C multilayer film with SiC susceptor 52 3-3-3 Patterned multilayer film transformation of microwave system with SiC susceptor 53 Chap 4 Microwave crystallization of a-Si film 55 4-1 Microwave crystallization of a-Si film using SiC susceptor 55 4-1-1 Characteristics of SiC rod susceptor under microwave irradiation 55 4-1-2 Microwave-crystallization of a-Si film using SiC-rod susceptor 57 4-1-3 Characteristics of SiC-powder susceptor under microwave irradiation 63 4-1-4 Crystallization of Si using SiC-powder as the susceptor 65 4-2 Microwave crystallization of a-Si with carbon overcoat 67 4-2-1 Characteristics of carbon overcoat under microwave irradiation 67 4-2-2 Crystallization of a-Si film with a carbon overcoat 69 4-3 Structural evolution of C/a-Si/C multilayer films during microwave irradiation 76 4-3-1 Characteristics of multilayer film under microwave irradiation 76 4-3-2 Crystallization of C/a-SiC/C multilayer with SiC suscuptor 77 4-4 Pattern transfer using microwave annealed multilayer film 81 4-4-1 Characteristics of multilayer film under microwave irradiation 81 4-5 Microwave crystallization of n-/p-doped amorphous Si:H film 83 Chap 5 Theoretical aspects of microwave crystallization of amorphous Si film 88 5-1 Thermal effect of susceptor with microwave irradiation 88 5-1-1 Thermal energy of Si with SiC susceptor 88 5-1-2 Thermal effect of a-Si film with carbon overcoat 91 5-2 Analysis of non-thermal effect of susceptor and a-Si under microwave irradiation 93 5-2-1 Analysis for crystallization of Si with a susceptor 93 5-2-2 Dipole effect of a-Si 95 Chap 6 Conclusions and prospective 100 6-1 Brief summaries 100 6-2 Conclusions 101 6-3 Suggestions for future works 102 References 103 Appendix 112

    [01] J. Bardeen, and W. H. Brattain, Phys. Rev. 71 230(1948).
    [02] P. G. Le Comber, W.E. Spear and A. Ghaith, Electronics Letters 5 179 (1979).
    [03] A. Misumi , K. Sunahara, H. Tanabe, and M. Kumada, IEEE IEDM Tech. Digest 305 (1981).
    [04] S. Morozumi, K. Oguchi, S. Yazawa, T. Kodaira, T. Kodaira, H. Ohshima, and T. Mano, SID Dig. 156 (1983).
    [05] T. Nishimura, A. Ishizu, T. Matsumoto and Y. Akasaka, Mat. Res. Symp. Proc. 33 221 (1984).
    [06] C. H. Fa and T. T. Jew, IEEE Trans. On Electron Devices 13 290(1966).
    [07] S. K. Kim, K. C. Park and J. Jang, J. Appl. Phys. 77 5115 (1995).
    [08] R. Dassow, J. R. Kohler, Y. Helen, K. Mourgues, O. Bannaund, T. Mohammed-Grahim, J. H. Werner, Semicond. Sci. Technol. 15 L31 (2000).
    [09] Collin RE. Foundations for microwave engineering. New York: McGraw-Hill, (1966).
    [10] E. T. Thostenson, T. W. Chou Microwave processing: fundamentals and applications. Composite: Part A 30 1055 (1999).
    [11] Dahl C. A., Matthews M. E., Marth E. H., J. Microwave Power and Electromagnetic energy 15 95 (1980).
    [12] Turner IW, Jolly PG, Drying Technology 9 1209 (1991).
    [13] V. Daniels. Dielectric Relaxation , Academic Press, London (1967).
    [14] N. E. Hill, W. E. Vaughan, A. H. Price & M. Davies. Van Nostrand Reinhold Co. London (1969).
    [15] J. B. Hasted. Chapman Hall (1973).
    [16] H. Fröhlich. Theory of Dielectrics , Oxford University Press, London (1958).
    [17] P. Debye. Polar Molecules , Chemical Catalog, New York (1929).
    [18] N. H. Williams. J. Microwave Power 2 123 (1967).
    [19] Barabanenkov Y. N., Zurk L. M., Barabanenkov M. Y., J. Electromagnetic waves and Applications 9 1393 (1995).
    [20] Kazi E. Haque, Int. J. Miner. Process. 57 1 (1999).
    [21] Peelamedu R. D., Roy R, Agrawal D, Materials Research Bulletin 36 2723 (2001).
    [22] A. Von Hippel. Dielectric Materials and their Applications MIT Press, (1954).
    [23] P. Debye. Polar Molecules , Chemical Catalog, New York (1929).
    [24] P. Debye, Phys. Zs. 36 100 (1935).
    [25] Kazi E. Haque, Int. J. Miner. Process. 57 1 (1999).
    [26] Brandon JR. Samuels J. Hodgkins WR. Microwave processing of materials III, Materials Research Society Proceeding, San Francisco, 269. Pittsburgh: Materials Research Society, 237 (1992).
    [27] Chen, T. T., Dutrizac, J. E., Haque, K. E., Wyslouzil, W., Kashyap, S. Can. Metall. Quart. 23 349 (1984).
    [28] McGill, S. L., Walkiewicz, J. W., J. Microwave Power and Electromagnetic energy 223 175 (1987).
    [29] McGill, S. L., Walkiewicz, J. W., Smyres, G. A., In: Sutton, W.H. Eds., Mat. Res. Soc. Symp. Proc. Reno, NV, M4.6, Vol. 124 (1988).
    [30] V. Kenkre, L. Skala, M. Weiser & J. Katz. J. Mater. Sci. 26, 2483 (1991).
    [31] G. Kriegsmann. J. Appl. Phys. 1960 ( 1992).
    [32] M. H. Brooks, I. J. Chabinsky, and W. H. Sutton, Microwave processing of materials, Materials Research Society symposium Proceeding, San Francisco, 124. 173 (1988).
    [33] A. C. Metaxas, and R. J. Meredith, IEEE Power Engineering Series 4 296-321 (1983).
    [34] J. W. Walkiewicz, G. Kazonich, and S. L. McGill, Miner. and Metall. Proc. 5 39-42 (1988).
    [35] C. O. Ania, J. A. Menendez, J. B. Parra, J. J. Pis, Carbon 42 1383–1387 (2004).
    [36] J. M. V. Nabais, P. J. M. Carrott, M. M. L. Carrott,. Ribeiro, J. A. Menendez, Carbon 42 1315–1320 (2004).
    [37] N. Makul, B. Chatveera, and P. Ratanadecho, Songklanakarin J. Sci. Technol. 31 1-13 (2009).
    [38] F. L. Paulauskas, J. E. Spruiell, SAMPE 40 6-14 (2004).
    [39] B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76 2511 (1996).
    [40] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science 269 1550 (1995).
    [41] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Imperial College Press, London, (1998).
    [42] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 381 678 (1996).
    [43] E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 277 1971 (1997).
    [44] P. Avouris, Chem. Phys. 281 429 (2002).
    [45] マイクロ波を利用した省エネルギー技術に関する 国際動向調査 平成16年3月 新エネルギー・産業技術総合開発機構.
    [46] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Leberge, and J. Rousell, Tetrahedrom Lett. 27 279 (1986).
    [47] D. M. P. Mingos and D. R. Baghurst, Br. Ceram. Trans. J. 91 124 (1992).
    [48] D. M. P. Mingos, Adv. Mater. 5 857 (1993).
    [49] W. F. Kladning and J. E. Horn, Ceramics International 16 99 (1990).
    [50] D. L. Johnson and M. E. Brodwin, EPRI Research Project 2730 01 (1987).
    [51] R. G. Bosisio, R. Dallaire, and P. Phromothansy, J. Microwave Power 12 309-317 (1977).
    [52] J. C. Araneta, M. Brodwin, and G. E. Kriegsmann, IEEE Trans. MTT32 1328-1335 (1984).
    [53] B. Chiang and A. Hoyte, Int. Microwave Power Institute Symposium Proceedings 63-64 (1982).
    [54] H. D. Kimrey, T. L. White. T. S. Bigrlow, P. F. Becher, J. Microwave Power, Symp. Summaries, 81-82 (1986).
    [55] D. W. Richerson, Modern Ceramic Engineering, Marcel Dekker Inc. (1982).
    [56] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics 485 (1976).
    [57] W. R. Tinga, Mat. Res. Soc. Symp. Proc. 60 105-116 (1985).
    [58] R. R. Dils, J. Appl. Phys. 54 1198-1201 (1983).
    [59] T. T. Meek and R. D. Blake, J. of Materials Science Letter 5 270-274 (1986).
    [60] T. T. Meek and R. D. Blake, J. of Materials Science Letter 5 270-274 (1986).
    [61] D. D. Edie, Carbon 36 345-362 (1998).
    [62] Y. Korai, S. H. Hong, I. Mochida, Carbon 37 203-211 (1999).
    [63] Y. Huang, R. J. Young, Carbon 33 97-107 (1995).
    [64] S. P. Jones, C. C. Fain, D. D. Edie, Carbon 5 1533-1543 (1997).
    [65] J. N. Hart, Y. B. Cheng, G. P. Simon, and L. Spiccia, Surf. Coat. Technol. 198 20 (2005).
    [66] S. Song, X. Fu, H. Tan, M. Tao, L. Chen, L. Wang, and C. Lin, Phys. Status Solidi A 164 779 (1997).
    [67] J. H. Ahn, J. N. Lee, Y. C. Kim, and B. T. Ahn, J. Appl. Phys. 82 2918 (1997).
    [68] J. N. Lee, Y. W. Choi, B. J. Lee, and B. T. Ahna, Current Applied Physics 2 135–139(2002).
    [69] R. Rao, G.C. Sun, Journal of Crystal Growth 273 68–73 (2004).
    [70] J. Jacob, L. H. L. Chia and F. Y. C. Boey, J. Mater. Sci. 30 5321 (1995).
    [71] A. Yokoi, H. Ogawa, A. Kan and Y. Nakamura, J. Eur. Ceram. Soc. 27 2989–2993 (2007).
    [72] T. Basak, Mater. Sci. Eng. A 457 261–274 (2007).
    [73] R. Wongmaneerung, P. Singjai, R. Yimnirun and S. Ananta, J. Alloys Compd. 456 492 (2009).
    [74] M. Narisawa, Y.K. Itoi, Okamura, J. Mater. Sci. 30 3401–3406 (1995).
    [75] D. L. Zhao, H.S. Zhao,W.C. Zhou, Phys. E 9 679–685 (2001).
    [76] Gary Lynn Harris, Properties of silicon carbide, London, 9 (1995).
    [77] Patrick, Choyke, Phys. Rev. B 2 2255-2256 (1970).
    [78] T. E. Atwater, and R. R. Wheeler, Appl. Phys. A 79 125-129 (2004).
    [79] C. A. Grimes E. C. Dickey, C. Munglem, K. G. Ong, D. Qian, J. appl. Phys. 90 Number 8 (2001).
    [80] C. Zeller, G. M. T. Foley, and F. L. Vogel, J. Mater. Sci. 13 1114 (1978).
    [81] E. Jansen, R. Ziermann, E. Obermeier􀇴G. Krötz, and Ch.Wagner, Materials Science Forum 264-268 631-634 (1998).
    [82] G. A. Slack, J. Appl. Phys. 35 3460 (1964).
    [83] G. W. C. Kaye, T. H. Laby, Table of Physical and Chemical Constants, 16th edn. 281 (Longman, London 1995).
    [84] Da Jiang Yang, Qing Zhang, George Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, Physical Review B 66, 165440 (2002).
    [85] A. Mizel, L. X. Benedict, M. L. Gohen, S. G. Louie, A.Zettl, N. K. Budra, W. P. Beyermann, Phys. Rev. B 60, 275 (1999).
    [86] W. Yi, L. Lu, Zhang Dian-lin, Z. W. Pan, S. S. Xie, Phys. Rev. B 59 280 (1999).
    [87] D. B. Meakin, P. A. Coxon, P. Migliorato, J. Stoemenos, and N. A. Economou, Appl. Phys. Lett. 50 1894 (1966).
    [88] M. C. Lee, S. M. Han, S. H. Kang, M. Y. Shin, and M. K. Han, IEEE IEDM Tech. Digest (2003).
    [89] D. P. Gosain, Jpn. J. Appl. Phys. 39 179 (2000).
    [90] R. Pethe, C. Deshpandey, S. Dixit, E. Demaray, D. Meakin, D. Orgill, N. Turner, Mat. Res. Soc. Symp. Proc. 471 3 (1997).
    [91] T. Sertkawa, IEEE Trans. Elec. Dev. 49 820 (2002).
    [92] M. K. Hatalis, and D. W. Greve, IEEE Elec. Dev. Lett., 8 361 (1987).
    [93] T. Aoyama, G. Kawachi, N. Konishi, T. Suzuki. Y. Olajima, and K. Miyata, J., Electrochem. Soc. 136 1168 (1989).
    [94] T. W. Little, K. Takahara, H. Koike, T. Nakazawa, I. Yudasaka, and H. Ohshima, Jpn. J. Appl. Phys. 30 1789 (1991).
    [95] A.T. Voutsas and M. K. Hatalis, J. Electrochem. Soc. 140 871-877 (1993).
    [96] A.T. Voutsas and M. K. Hatalis, J. Electron. Mat. 23 319-330 (1994).
    [97] T. Asano, K. Aoto, and Y. Okada, Jpn. J. Appl. Phys. 36 1415 (1997).
    [98] A. Nakamura, F. Emoto, E. Fujii, Y. Uemoto, A. Yamamoto, K. Senda, G. Kano, Lpn. J. Appl. Phys. 27 2408-2410 (1988).
    [99] M. K. Hatalis and D. W. Greve, J. Appl. Phys. 63 2260-2266 (1988).
    [100] E. Adachi, T. Aoyama, N. Konishi, T.Suzuki, Y. Okajima, and K. Mjyata, Jpn. J. Appl. Phys. 27 1809-1811 (1988).
    [101] A. T. Vouttsas and M. K. Hatalis, J. Electrochem. Soc. 140 870-877 (1993).
    [102] L. Haji, P. Joubert, J. Stoemenos, and N. A. Economou, J. Appl. Phys. 75 3944-3952(1994).
    [103] M. Bonnel, N. Duhamel, L. Haji, B. Loisel, and J. Stoemenos, IEEE Elec. Dev. Lett. 14 551 (1993).
    [104] G. Ottaviani, D. Sigurd, V. Marrello, J. W. Mayer, and J. O. McCaldin, J. Appl. Phys. 45 1730 (1974).
    [105] L. Hultman, A. Robertson, H. T. G. Hentzell, and I. Engstrom, J. Appl. Phys. 62 3647 (1987).
    [106] S. F. Gong, H. T. G. Hentzell, A. E. Robertsson, L. Hultman, S. E. Hormstrom, and G. Radnoczi, J. Appl. Phys. 62 3726 (1987).
    [107] G. Radnoczi, A. Robertson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, J. Appl. Phys. 69 6394 (1991).
    [108] E. Nygren, A. P. Pogany, K. T. Short, J. S. Williams, R. G. Elliman, and J. M. Poate, Appl. Phys. Lett. 52 439 (1988).
    [109] K. N. Tu, Appl. Phys. Lett. 27 221 (1975).
    [110] J. H. Kim, J. Y. Lee, Jpn. J. Appl. Phys. 35 2052 (1996).
    [111] U. Koster, P. Weiss, J. Non-cryst. Solids 17 359 (1975).
    [112] L. Hultman, A. Robertson, H. T. G. Hentzell, and I. Engstrom, J. Appl. Phys. 62 3647 (1987).
    [113] R. J. Nemamichi, c. C. Tsai, M. J. Thompson, and T. W. Sigmon, J. Vac. Sci. Technol. 19 685 (1981).
    [114] G. Liu and S. J. Fonash, Appl. Phys. Lett. 55 669 (1989).
    [115] R. J. Nemanichi, R. T. Nemanichi, R. T. Fulks, B. L. Stafford, and H. A. Vanderplas, J. Vac. Sci. Technol. A3 938 (1985).
    [116] Y. Kawazu, H. Kudo, S. Onari, T. Arai, Jpn. J. Appl. Phys. 29 2698 (1990).
    [117] S. W. Russel, J. Li, and J. W. Mayer, J. Appl. Phys. 70 5153 (1991).
    [118] M. S. Haque, H. A. Naseem, W. D. Brown, J. Appl. Phys. 75 3928 (1994).
    [119] J. Y. Wang, D. He, Y. H. Zhao, and E. J. Mittemeijer, Appl. Phys. Lett. 88 061910 (2006).
    [120] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, J. Appl. Phys. 84 194 (1998).
    [121] T. Ma, and M. Wong, J. Appl. Phys. 91 1236. (2002).
    [122] E. I. Shtyrkov, I. B. Khaibullin, M. M. Zaripov, M. F. Galyatudinov, and R. M. Bayasitov, Sov. Phys. Semicond. 9 1309-1310 (1975).
    [123] James S. Im, H. J. Kim, and Michael O. Thompson, Appl. Phys. Lett. 63 1969 (1993).
    [124] James S. Im, H. J. Kim, Appl. Phys. Lett. 64 2303 (1994).
    [125] S. R. Stiffler, Michael O. Thompson, and P. S. Peercy, Phys. Rev. Lett. 60 2519 (1988).
    [126] S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, J. Appl. Phys. 82 4086 (1997).
    [127] J. W. Park, D. G. Moon, B. T. Ahn, H. B. Im, K. R. Lee, Thin Solid Films, 245, 228 (1994).
    [128] H. Zhang, J. Zhang, H. Zhang, M. R. S. Bulletin, 41, 1279 (2006).
    [129] Y. W. Choi, J.N. Lee, T.W. Jang, B.T. Ahn, IEEE Electron Device Lett. 20 2 (1999).
    [130] G. Farhi, M. Aoucher, T. Mohammed-Brahim, Solar Energy Mater. Solar Cells 72 551 (2002).
    [131] I. D. Wolf, Semicond. Sci. Technol. 11 (1996) 139.
    [132] Christian Antonio and Rowan T. Deam, Phys. Chem. Chem. Phys. 9, 2976 (2007).
    [133] C. Gibson, I. Matthews and A. Samuel, J. Microwave Power Electromagnetic Energy, 23, 17 (1988).
    [134] Keith R. Paton, Alan H. Windle, Carbon 46, 1935 (2008).
    [135] R. B. Iverson, R. Reif, J. Appl. Phys 62 1675 (1987).
    [136] Y. V. Bykov, K. I. Rybakov and V. E. Semenov, J. Phys. D: Appl. Phys. 34 R55-57 (2001).
    [137] G. Lucovsky, So1id State Communications 29 571—576 (1979).
    [138] S. Pantelides, Phys. Rev. Lett. 58 1344 (1987).
    [139] T. Shimizu, M. Kumeda, Jpn. J. Appl. Phys. 38 911(1998).
    [140] R. Biswas, B.C. Pan, Solar Energy Materials & Solar Cells 78 447–467(2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE