研究生: |
陳昌信 Chang-Xin Chen |
---|---|
論文名稱: |
摻雜鈥元素之矽奈米線的製備及分析 Synthesis and Analysis of Holmium-doped Silicon Nanowires |
指導教授: |
陳力俊
Lih-Juann Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 奈米線 、矽 、鈥 |
外文關鍵詞: | nanowires, silicon, holmium |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The research focuses on the synthesis of holmium doped silicon nanowires. Large-area silicon nanowires on Au-coated silicon substrates were prepared with silicon and holmium chloride as sources. The formation mechanism of silicon nanowires could be explained by a vapor-liquid-solid (VLS) growth process with metal catalysts. Variation of the experimental parameters, such as pressure, temperature, carrier gas, and the ratio of silicon and holmium chloride sources led to the finding of the optimal growth conditions. The carrier gases were found to influence significantly the diameter of the silicon nanowires. The transmission electron microscope image shows a typical silicon nanowire with coaxial nanostructures with a silicon nanowire core inside and an outer amorphous oxide sheath. For field emission properties, the excellent turn-on field and β value of the nanowires were attributed to the high density of silicon nanowires. In the I-V measurements, consistent values of resistivity were obtained.
References
Chapter 1
1.1 S. Iijima, Helical microtubeles of graphitic carbon, Nature 354 (1991)
56-58
1.2 A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune,
and M J. Heben, Storage of hydrogen in single-walled carbon nanotubes,
Nature 386 (1997) 377-379
1.3 M. Dresselhaus, G. Dresselhaus, P. Eklund, and R. Saito, Carbon
nanotubes, Phys.World 33 (1998) 33-38
1.4 J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker,
Electronic structure of atomically resolved carbon nanotubes, Nature
391(1998) 59-62
1.5 P. M. Ajayan, Nanotubes from carbon, Chem. Rev. 99 (1999) 1787-1799
1.6 C. Dekker, Carbon nanotubes as molecular quantum wires, Phys. Today 52
(1999) 22-28
1.7 S. J. Tans, A. R. M. Verschueren and C. Dekker, Room-temperature
transistor based on a single carbon nanotube, Nature 393 (1998) 49-52
1.8 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H.
Dai, Nanotube molecular wires as chemical sensors, Science 287 (2000)
622-625
1.9 P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Extreme oxygen
sensitivity of electronic properties of carbon nanotubes, Science 287 (2000)
1801-1804
1.10 Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig,
and R. P. H. Chang, A nanotube-based field-emission flat panel display,
Appl. Phys. Lett. 72 (1998) 2912-2913
1.11 S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H.
Dai, Self-oriented regular arrays of carbon nanotubes and their field
emission properties, Science 283 (1999) 512-514
1.12 J. Hu, M. Ouyang, P, Yang, and C. M. Lieber, Controlled growth and
electrical properties of heterojunctions of carbon nanotubes and silicon
nanowires, Nature 399 (1999) 48-51
1.13 T. Odom, J. Huang, P. Kim, and C. Lieber, Atomic structure and electronic
properties of single-walled carbon nanotubes, Nature 391 (1998) 62-64
1.14 T. W. Ebbesen, H. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T.
Thio, Electrical conductivity of individual cabon nanotubes, Nature 382
(1996) 54-56
1.15 A. Batchtold, C. Strunk, J. P. Salvetat, J. M. Bonard, L. Forro, T. Nussbaumer,
and C. Schonenberger, Atomic structure and electronic properties of
single-walled carbon nanotubes, Nature 397 (1999) 673-675
1.16 D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, Atomic
structure and electronic properties of single-walled carbon nanotubes,
Science 299 (2003) 1874-1877
1.17 D. Appell, Wired for success, Nature 419 (2002) 553-555
1.18 Y. Cui, X. Duan, J. Hu, and C. M. Lieber, Doping and electrical transport in
silicin nanowires, J. Phys. Chem. B 104 (2000) 5213-5216
1.19 J. Y. Yu, S. W. Chung, and J. R. Heath, Silicon nanowires : Preparation,
device fabrication, and transports properties, J. Phys. Chem. B 104 (2000)
11864-11870
1.20 S. W. Chung, J. Y. Yu, and J. R. Heath, Silicon nanowire devices, Appl. Phys.
Lett. 76 (2000) 2068-2070
1.21 Y. Cui, C. M. Lieber, Functional nanoscale electronic devices assembled
using silicon nanowire building blocks, Science 291 (2001) 851-853
1.22 Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, High
performance silicon nanowire field effect transistors, Nano Lett. 2 (2003)
149-152
1.23 Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire nanosensors for
highly sensitive and selective detection of biological and chemical species,
Science 293 (2001) 1289-1292
1.24 X. Duan, Y. Huang, R. Agarwal, and C.M. Lieber, Single-nanowire
electrically driven lasers, Nature 421 (2003) 241-245
1.25 M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo,
and P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science
292 (2001) 1897-1899
1.26 X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L.
Goldman, High-performance thin-film transistors using semiconductor
nanowires and nanoribbons, Nature 245 (2003) 274-278
1.27 V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gcsele, Realization
of a silicon nanowire vertical surround-gate field-effect transistor, Small 2
(2003) 85-88
1.28 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M.
Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric
performance of rough silicon nanowires, Nature 451 (2008) 163-168
1.29 A. I. Boukai, Y. Bunimovich, T. K. Jamil, J. K. Yu, W. A. Goddard III and J.
R. Heath, Silicon nanowires as efficient thermoelectric materials, Nature
451 (2008) 168-171
1.30 O.V. Aleksandrov, A.O. Zakharin, N.A. Sobolev, E.I. Shek, M.I.
Makovijchuk, and E.O. Parshin, Formation of donor centers upon
annealing of dysprosium-and holmium-implanted silecon, Semiconductors
32 (1998) 921-923
1.31 V.V. Emtsev, Jr, D.S. Poloskin, N.A. Sobolev, E.I. Shek, J. Michel, and L.C.
Kimerling. Impurity centers in silicon doped with rare-earth impurities of
dysprosium, holmium, erbium, and ytterbium, Semiconductors 33 (1999)
603-605
1.32 V.I. Vdovin, T.G. Yugova, N.A. Sobolev, E.I. Shek, M.I. Makovijchuk and
E.O. Parshin, Extended defects in Si wafers implanted with ions of
rare-earth elements, Nucl. Instrum. and Methods in Phys. Reserch. B 147
(1999) 116-121
1.33 J. Michel, J.L. Benton, R.F. Ferrante, D.C. Jacobson, D.J. Eaglesham, E.A.
Fitzgerald, Y.-H. Xie, J.M. Poate, and L.C. Kimerling, Impurity
engancement of the 1.54 μm Er3+ luminescence in silicon, J. Appl. Phys. 70
(1991) 2672-2678
1.34 F. Priolo, G. Franz□, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D.
Carey, The erbium-impurity interaction and its effects on the 1.54 μm
luminescence of Er3+ in crystslline silicon, J. Appl. Phys. 78 (1995)
3874-3882
1.35 G. Franz□, F. Priolo, S. Coffa, A. Polman and A. Carnera, Room-temperature
electroluminescence from Er-doped crystalline Si, Appl. Phys. Lett. 64
(1994) 2235-2237
1.36 B. Zheng, J. Michel, F.Y.G. Ren, L.C. Kimerling, D.C. Jacobson, and J.M.
Poate, Room-temperature sharp line electroluminescence at X=1.54 pm
from an erbium-doped, silicon light-emitting diode, Appl. Phys. Lett. 64
(1994) 2842-1844
1.37 R.S.Wagner, and W.C.Ellis, Appl. Phys. Lett 4 (1964 ) 89
1.38 J. Westwater, and D. P. Gosain, Growth of silicon nanowires via gold/silane
vapor-liquid-solid reaction, J. Vac. Sci. Technol. B 1997, 15, 554
1.39 Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T.
Lee, Silicon nanowires prepared by laser ablation at high temperature,
Appl. Phys. Lett. 72 (1998) 1835-1837
1.40 N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Leea),
SiO2-enhanced synthesis of Si nanowires by laser ablation, Appl. Phys.
Lett. 73 (1998) 3902-3904
1.41 N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, Nucleation and
growth of Si nanowires from silicon oxide, Phys. Rev. B 58 (1998)
16024-16026
1.42 M. Zhang, E. Ciocan, Y. Bando, K. Wada, L. L. Cheng, and P. Pirouz, Bright
visible photoluminescence from silica nanotube flakes prepared by the
sol–gel template method, Appl. Phys. Lett. 80 (2002) 491-493
1.43 H. Cao, Y. Xu, J. Hong, H. Liu, G. Yin, B. Li, C. Tie, and Z. Xu, Sol-gel
template synthesis of an array of single crystal CdS nanowires on a
porous alumina Template, Adv. Mater. 13 (2001) 1393-1394
1.44 Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang,
Electrochemically induced sol-gel preparation of single-crystalline TiO2
nanowires, Nano lett. 2 (2002) 717-720
1.45 G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, and Y. Q. Mao,
Large-scale synthesis of single crystalline gallium nitride nanowires, Appl.
Phys. Lett. 75 (1999) 2455-2457
Chapter 3
3.1 Y. L. Cheuh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen,
Synthesis of taperlike Si nanowires with strong field emission, Appl. Phys.
Lett. 86 (2005) 133112.1-13312.3
3.2 C. T. Huang, C. L. Hsin, K. W. Huang, C. Y. Lee, P. H. Yeh, U. S. Chen, and
L. J. Chen, Er-doped silicon nanowires with 1.54 μm light-emission and
enhanced electrical and field-emission properties, Appl. Phys. Lett. 91
(2007) 093133.1-093133.3
3.3 Y. L. Cheuh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C.D. Chen, TaSi2
Nanowires: A Potential Field Emitter and Interconnect, Nano Lett. 8 (2006)
1637-1644
3.4 Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, Doping and Electrical
Transport in Silicon Nanowires, J. Phys. Chem. B 104 (2000) 5213-5216