簡易檢索 / 詳目顯示

研究生: 劉豐源
Liu, Feng-Yuan
論文名稱: 使用半正定規劃解決球面三距離集合問題
Semidefinite Programming Bounds For Spherical Three-Distance Sets
指導教授: 李哲榮
Lee, Che-Rung
俞韋亘
Yu, Wei-Hsuan
口試委員: 傅恆霖
Fu, Hung-Lin
林延輯
Lin, Yen-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 37
中文關鍵詞: 球面多距離集合球面編碼球面設計半正定規劃凸優化
外文關鍵詞: spherical few distance set, spherical codes, spherical design, semidefinite programming, convex optimization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 球面三距離集合(spherical three-distance set)是指一個有限的單位向量集合,使得該集合滿足兩兩相異向量間的距離只有三種(也就是只有三種內積值)。最大基數的球面三距離集合是球面編碼理論裡的一個經典問題。
    在此本篇論文,我們使用了半正定規劃方法,在許多維度中得到了更緊的上界。在7維,我們將上界從91降低到84;在23維,我們把上界從2301降低到2300,並且證明2300個點是最大基數的球面三距離集合在23維中。


    A spherical three-distance set is a fi nite collection X of unit vectors in R^n such that for each pair of distinct vectors has three inner product values. The maximum cardinality of spherical three-distance set is a classic problem in spherical coding
    theorem.
    In this thesis, we use the semidefi nite programming method to improve the upper bounds of spherical three-distance sets for several dimensions. We improve the upper bounds for spherical three-distance sets in R^7 from 91 to 84 and we prove that maximum size of spherical three-distance sets is 2300 in R^23.

    1 Introduction 1 2 Previous method 4 3 Semide nite programming method 8 4 Discrete sampling points with Nozaki theorem 11 5 Continuous interval with sum of squares method 14 6 Experiments 19 7 Discussion and conclusion 29 Bibliography 31 A Uniform distribution on spherical space 34 B Correction on related paper 36

    [BB09] Eiichi Bannai and Etsuko Bannai, A survey on spherical designs and algebraic combinatorics on spheres, European Journal of Combinatorics 30(2009), no. 6, 1392–1425.
    [BS81] Eiichi Bannai and Neil JA Sloane, Uniqueness of certain spherical codes, Canadian Journal of Mathematics 33(1981), no. 2, 437–449.
    [BV04] Stephen Boyd and Lieven Vandenberghe, Convex optimization, CambridgeUniversity Press, 2004.
    [BV08] Christine Bachoc and Frank Vallentin, New upper bounds for kissing num-bers from semidefinite programming, Journal of the American Mathematical Society21(2008), no. 3, 909–924.
    [BY13] Alexander Barg and Wei-Hsuan Yu, New bounds for spherical two-distancesets, Experimental Mathematics 22(2013), no. 2, 187–194.
    [BY14] ,New bounds for equiangular lines, Contemporary Mathematics 625(2014), 111–121.
    [CK07] Henry Cohn and Abhinav Kumar, Uniqueness of the (22, 891, 1/4) spherical code, New York J. Math 13(2007), 147–157.
    [Cuy05] Hans Cuypers,A note on the tight spherical 7-design in R23 and 5-designin R7∗, Designs, Codes and Cryptography 34(2005), no. 2-3, 333–337.
    [Del73a] Philippe Delsarte, An algebraic approach to the association schemes of coding theory, Philips research reports supplements (1973), no. 10, 103.
    [Del73b] Philippe Delsarte,Four fundamental parameters of a code and their combinatorial significance, Information and Control 23(1973), no. 5, 407–438.
    [DGS77] Philippe Delsarte, Jean-Marie Goethals, and Johan Jacob Seidel, Spherical codes and designs, Geometriae Dedicata 6(1977), no. 3, 363–388.
    [GBY08] Michael Grant, Stephen Boyd, and Yinyu Ye, Cvx: Matlab software for disciplined convex programming, 2008.
    [GY18] Alexey Glazyrin and Wei-Hsuan Yu, Upper bounds for s-distance sets andequiangular lines, Advances in Mathematics 330(2018), 810–833.
    [Hil88] David Hilbert, ̈Uber die darstellung definiter formen als summe von for-menquadraten, Mathematische Annalen32(1888), no. 3, 342–350.
    [Lev92] VI Levenshtein, Designs as maximum codes in polynomial metric spaces, Acta Applicandae Mathematica29(1992), no. 1-2, 1–82.
    [Löf09] Johan Löfberg, Pre- and post-processing sum-of-squares programs in practice, IEEE Transactions on Automatic Control54(2009), no. 5, 1007–1011.
    [MN11] Oleg R Musin and Hiroshi Nozaki, Bounds on three-and higher-distance sets, European Journal of Combinatorics32(2011), no. 8, 1182–1190.
    [Mus09] Oleg R Musin, Spherical two-distance sets, Journal of Combinatorial Theory, Series A116(2009), no. 4, 988–995.
    [Nes00] Yurii Nesterov, Squared functional systems and optimization problems, High performance optimization, Springer, 2000, pp. 405–440.
    [Noz09] Hiroshi Nozaki, New upper bound for the cardinalities of s-distance sets on the unit sphere, arXiv preprint arXiv:0906.0195 (2009).
    [Noz11] ,A generalization of larman–rogers–seidels theorem, Discrete Mathematics311(2011), no. 10-11, 792–799.
    [Ran47] Robert Alexander Rankin, On the closest packing of spheres in n dimensions, Annals of Mathematics (1947), 1062–1081.
    [S+42] IJ Schoenberg et al., Positive definite functions on spheres, Duke Mathematical Journal 9(1942), no. 1, 96–108.
    [Shi13] Masashi Shinohara, Uniqueness of maximum three-distance sets in the three-dimensional euclidean space, arXiv preprint arXiv:1309.2047 (2013).
    [SÖ18] Ferenc Szöllősi and Patric R.J. Östergård, Constructions of maximum few-distance sets in euclidean spaces, arXiv preprint arXiv:1804.06040 (2018).
    [Stu99] Jos F Sturm, Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones, Optimization methods and software 11(1999), no. 1-4,625–653.
    [TTT99] Kim-Chuan Toh, Michael J Todd, and Reha H Tütüncü, Sdpt3a matlab software package for semidefinite programming, version 1.3, Optimization methods and software 11(1999), no. 1-4, 545–581.
    [VB96] Lieven Vandenberghe and Stephen Boyd, Semidefinite programming, SIAM review38(1996), no. 1, 49–95.
    [Yu17] Wei-Hsuan Yu, New bounds for equiangular lines and spherical two-distance sets, SIAM Journal on Discrete Mathematics 31(2017), no. 2,908–917.

    QR CODE